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Abstract. This study was carried out to find an optimum method of interpolation for the depth values of

groundwater in Lahore metropolitan, Pakistan. The methods of interpolation considered in the study were

inverse distance weight (IDW), spline, simple Kriging, ordinary Kriging and universal Kriging. Initial

analysis of the data suggests that the data was negatively skewed with value of skewness -1.028. The

condition of normality was approximated by transforming the data using a box-cox transformation with

lambda value of 3.892; the skewness value reduced to -0.00079. The results indicate that simple Kriging

method is optimum for interpolation of groundwater observations for the used dataset with lowest bias

of 0.00997, highest correlation coefficient with value 0.9434, mean absolute error 1.95 and root mean

square error 3.19 m. Smooth and uniform contours with well described central depression zone in the city,

as suggested by this studies, also supports the optimised interpolation method.
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Introduction

Geographical data obtained through field survey is

mostly in the form of discrete measurements at regular

or irregular intervals. Taking into account the cost and

time, continuous measurement at every location is

almost impossible. Yet, there are physical quantities

that are inherently continuous in nature like temperature,

water table, elevation etc. Thus, it becomes somewhat

essential to know exact values of variables at every

physical location. Therefore, a mechanism is required

to fill in the gaps to ensure data continuity with an

acceptable level of accuracy. No matter, what the method

is, the process always approximates the value at un-

sampled location, which can be more or less close to

the exact values. Based on the degree of exactness,

method selection processes can be based for better

approximation. In this regard there are different possible

approaches that can be used to check accuracy of the

predictions. Mostly, different statistical methods and

procedures are adopted to accomplish this task. The

procedure of optimisation of interpolated values is a

vital step as most of the further research is based on the

predicted values. Therefore, selection of an optimum

method becomes the key for further analysis because

different interpolation methods may give different

results.

A range of spatial interpolation methods are available

from simple predictions to sophisticated and complex

procedures (Sun et al., 2009). However, a uniformly

optimal method for all kinds of dataset does not exist

(Varouchakis and Hristopulos, 2013). Many methods

have been discussed in the literature (Li and Heap,

2008). Varouchakis and Hristopulos (2013) have

compared class of deterministic interpolation methods

(Inverse Distance Weighted and Minimum Curvature)

with Stochastic methods (ordinary Kriging and universal

Kriging). Through cross-validation they have found

that Stochastic methods perform well as compared to

deterministic methods for groundwater interpolation.

Previous researches have been conducted by resear-

chers around the world relating to spatial interpolation

(Anderson, 2002; Caruso and Quarta, 1998). However,

there is little or no harmony among the researchers on

the supremacy of one technique over the other (Naoum

and Tsanis, 2004). Still there are few methods that are

more popular and produce best representation of the

original surfaces particularly in concurrence to the field

of the study of the variable. Several researches suggest

that the use of geographic information system (GIS)

has an advantage for studying and modeling spatial

distribution of groundwater (Marchant et al., 2013; Rios

et al., 2013; Sun et al., 2011; Thompson et al., 2004),

however, there is no general consensus. The most com-

monly used methods of interpolation in geographic

information systems (GIS) are inverse distance weight

(IDW) (Buchanan and Triantafilis, 2009; Sun et al.,

2009), spline (Varouchakis and Hristopulos, 2013;*Author for correspondence; E-mail: khalid.m270@yahoo.com
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Buchanan and Triantafilis, 2009) and Kriging (Pokhrel

et al., 2013; Sun et al, 2009; Yang et al., 2008). More-

over, considerable variation within each type is also

present e.g., ordinary Kriging, simple Kriging, universal

Kriging. For groundwater observations, Kriging method

is mostly found to be the best representing surface

(Varouchakis and Hristopulos, 2013; Uyan and Cay

2013; Nikroo et al. 2010; Sun et al., 2009; Theodossiou

and Latinopoulos, 2006). Kriging method have used

for the interpolation of groundwater measurements

and then used cross-validation for their results to

check quality of the used method (Theodossiou and

Latinopoulos, 2006).

Interpolation techniques. Inverse distance weight

(IDW). One of the oldest spatial prediction techniques

is inverse distance interpolation (Hengl, 2007), which

inherently employs Tobler�s law of geography (Tobler,

1970) and assumes that things that are closer together

are more related.
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where:

zo is the estimated value, and different choices of power

p
i
 will result in different estimates.

Spline. Spline estimates values in order to minimise

overall surface curvature, thus, it is also called minimum

curvature technique. The minimum curvature (MC)

method is based on Green�s function, gm, of the biharmonic

equation, which satisfies Ñ4 gm(s - s' ) = ¶(s - s' ),

where:

¶(s - s' ) is the Dirac delta function, the 2D Green�s

function is given by gm (d) = d2(ln d-1) (Varouchakis

and Hristopulos, 2013). The MC estimate is expressed

as:

z ( so ) = åw i gm ( d i ,j)

N

i = 1

The weights wi are determined by solving the following

linear system at the N number of sample locations.

z ( sj ) = åw i gm ( d i,j)

N

i = 1

where:

i = 1, N and di, j are the distances between the sample

points di, j 
_ |si-si|.

Kriging. Kriging unlike IDW and spline is Stochastic

and uses spatial and statistical relationships to estimate

values. There are more decisions to be made regarding

the spatial structure of the data like calculations of

variogram parameters, variogram model, anisotropy etc.,

and hence it requires more input from the user. Kriging

along with prediction surface also gives an error surface.

It is the best linear unbiased method that depends upon

spatial relationships in a dataset (Christakos, 2000;

Goovaerts, 1997; Kitanidis, 1997; Isaaks and Srivastava,

1989).

All Kriging estimators are modifications of basic linear

regression estimator Z*(s) defined as:

Z*(s) - m(s) = Sl i [Z(si) - m(si)]

n

i = l

where:

s, si = location for estimation point and neighbouring

points i; n = number of data points in local neighbour-

hood used for estimation; m(s), m(si) = mean global

and local; li = Kriging weight

Ordinary Kriging. It is a simple and commonly used type

of Kriging, in which mean is assumed to be unknown.

In this case the Kriging estimator can be written as:
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Filtering the local mean by requiring Kriging weights

sum to 1, the OK estimator becomes:
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Simple Kriging. In simple Kriging it is assumed that

the trend component is a constant and mean, m(u), is

known therefore:
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Spherical model. It is given as:
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Near 0, it has a linear behaviour for small h but flattens

out at greater h, and attains the sill at a.

The Exponential model. Mathematically it is described

as:

)
3

exp(1)(
a

h
r --=g

Near 0, it is linear for small h, but it rises more steeply

and then flattens out more gradually than the spherical

model. It reaches its sill asymptotically. Its practical

range, a, corresponds to 95% of the sill.

The Gaussian model. It is used to model extremely

continuous phenomena:

)
3

exp(1)(
a

h
r --=g

2

2

Its practical range also corresponds to 95% of the sill

as it reaches its sill asymptotically.

In this paper all four discussed interpolation methods

for subclasses of Kriging are analysed and compared

to optimise the better prediction method for dataset in

hand. Further, this optimisation is verified by ground-

water hydrology studies of the area using contour

patterns as an indicator of the underlying aquifer type.

Materials and Methods

Static water level values for the months of April, July

and October 2011, were available from water and

sanitation agency (WASA). WASA periodically measures

the depth on each of its tubewells installed within Lahore

district. However, in each month observation, values

for all of its installed tubewells is not noted. The sampling

locations are unevenly distributed and the presence of

river Ravi on the NE side has a profound effect on the

depth values.

The coordinate information for 476 tubewells was

gathered by field survey of each tubewell site using

Garmin GPSmap 76CSx with an accuracy of 3 meter,

shown in Fig. 1. The depth values for October 2011,

are selected for the work as it was the most recent data

available.

The estimate is automatically unbiased, since E[Z(u)-m]=0.

The estimation error is a linear combination of random

variables representing residuals at the data points, and

the estimation point.
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Universal Kriging. It assumes the model:

Z(u) = m(u) + e(u)

where:

m(u) is some deterministic function Trend can also be

composed of a linear function of the spatial coordinates

themselves. The universal Kriging types assume that

there is a structural component present and that the

local trend varies from one location to another. Trends

that vary, and where, the regression coefficients are

unknown, form models for universal Kriging.

Variography. It is to fit a spatial-dependence model to

data for quantifying the spatial-dependence. Kriging

uses the model fitted from variography to make predic-

tions. The empirical variogram provides a description

of how the data are correlated with distance.

If there are no distinct anisotropy, the omnidirectional

empirical semivariogram is estimated, otherwise, direc-

tional variograms are used. Mathematically it is given as:
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where:

g(r) = semivariogram; N(r) is the number of pairs at lag

r (Varouchakis and Hristopulos, 2013). Variograms

constructed from the sample do not give semivariances

for all of separation distances then it is necessary to

model the variograms for all possible values of separation

distances. Some variogram models reach the sill, while

others do not. Transition models are those that reach a

plateau. The plateau is the sill, and the corresponding

lag distance is the range.

Circular model. A circular semivariogram model is

based on 2D geometry and is valid in 2 or 1 dimensions.

Mathematically it is given as:
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The data of October 2011 has 291 recorded observa-

tions, the statistical summary of the samples is given

in Table 1.

The data was negatively skewed -1.028 and the statistical

test of Shapiro-Wilk suggests that the data in its original

form cannot be approximated to a normal distribution.

However, using a box-cox transform of lambda value

of 3.85, the skewness value reduces to -0.00079. The

data can then be approximated by a normal distribution

as shown in Fig. 2.

The 3D projection of the data values suggests that there

is a global trend in the data. This information becomes

useful during universal Kriging to detrend the data.

Statistical parameters used for demonstration of

efficiency. The following utilities and parameters are

used to perform comparison of the interpolation methods

in this study.

Cross-validation. This process iteratively removed an

observation from the dataset and estimated the value at

that point using the remaining values (Arlot and Celisse,

Fig. 1. Distribution of tubewell locations with surface hydrologic setup.

Table 1. Initial statistics of the data

Mean 5% Trimmed Median Variance SD Minimum Maximum Range IQR Skewness Kurtosis
mean

34.149 34.728 36.45 58.921 7.676008 9.12 45.02 35.9 10.4 -1.028 0.468

SD = standard deviation; IQR = Interquartile range.
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2010). The estimated and the original values were then

compared to calculate residuals, which were in fact the

error of the surface at each location. It is the statistics

performed on these errors that forms the basis of method

selection procedures. Cross-validation process has been

very commonly used in method selection (Sun et al.,

2009; Theodossiou and Latinopoulos, 2006; Caruso

and Quarta, 1998).

RMSE. The chief selected explanation of cross-

validation is root mean squared error (RMSE) (Sun

et al., 2009). It can cope for stationary points and

extremes, and is calculated as:

( )
=

-=
n

i

i ZZ
n

RMSE

1

21å
where:

Z = estimated value; Zi = measured values at sampling

point; n = number of values used for estimation.

Bias. The mean of the error distribution is often referred

to as bias and a reasonable goal for any estimation

method is to produce unbiased estimates so the bias

should be as close to zero as possible.

Mean absolute error (MAE). A summary statistic that

incorporates both the bias and the spread, is the mean

absolute error which is given:

MAE
=

=
n

i
n

1

1å r

Correlation. Correlation between measured and

predicted values was another criterion (Sun et al., 2009;

Caruso and Quarta, 1998) used here to assess the

suitability of interpolation methods.

Error plots. The graphs drawn between the measured

and the estimated values along with another graph

between the error and measured values give a good

indication of the areas or regions of over-prediction

and under-prediction (Theodossiou and Latinopoulos,

2006).

Contour analysis. A further analysis of suitability was

done using the respective contours of each type of

interpolation. The roughness and smoothness of the

resulting contours from different methods can be

used to assess the effect of different decisions like the

number of neighbours included leading to considerable

variation of the estimates (Varouchakis and Hristopulos,

2013), or the smoothness due to the inherent nature

of method like MC. By relating the contours with the

knowledge of the local groundwater dynamics of the

region, a discussion on the suitability of the contours

can be done.

Analysis of uncertainty. Numerous quantitative

measures can be used as a goodness-of-fit statistic for

the variograms. The standard deviation of the estimation

error is an index of uncertainty based on the number

of nearby data points, the proximity of the samples,

and also the interaction between the various factors

(Sun  et al., 2009).

Method adopted for the study. The interpolations

performed were IDW, spline, ordinary Kriging, simple

Kriging and universal Kriging. ArcGIS 9.3 software

was used for this purpose. Each type of interpolation

was performed on October 2011 depth values without

forming subsets of the data.

Deterministic methods. For IDW, the decisions to be

made were of the power value which was optimised

and the optimum value calculated was 2. The shape of

the neighbourhood is specified and constraints within

158 Khalid Mahmood et al.

Fig. 2. Data before transformation (A) and after

the box-cox 3.85 transformation (B).
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the shape are established. An anisotropy factor of 1.25

was used with semi- major axis of 1000 m and semi-minor

axis was 800 m. The direction was at 20°. Neighbour

search was done using eight sectored ellipse with a

minimum of 2 points in each sector and a maximum

of 5 points. This was done to ensure that the neighbours

selected were from all sides and not only one.

For spline, the sub-method used from the available

methods was the �completely regularized spline� which

is the common minimum curvature method. Like IDW,

to incorporate the directionality of the data as shown

in Fig. 3, the direction was taken as 20° and the major

axis was 1000 m with minor axis of 800 m.

the presence of river Ravi on the north-western side

gives a directionality to the data with axis of maximum

continuity at an angle of 45° and the axis of small scale

variability at an angle of 130° as shown in Fig. 4.

Stochastic methods. For using Kriging family of

interpolators, variograms are constructed and different

classical models like spherical, exponential and Gaussian

are fit on the data. The semivariograms are constructed

using the method of moments. Parameters like the

correlation length and sill are calculated for each fitted

model. The selection of the optimal semivariogram

model was done using leave one out cross-validation.

The pattern of the data appears relatively isotropic with

its major axis aligned in the NE direction. The directional

variograms shown in Fig. 4, give a clear indication that

Fig. 3. Directional distribution, standard devia-

tional ellipse (1 SD).
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Fig. 4. Anisotropic behaviour at 130° (A) and at

45° (B) in two different direction.
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Anisotropic models are fit to the data to cater for this

directionality and the neighbourhood searches are thus

elliptical. The �neighbours to include� were chosen

based on the range and correlation lengths obtained from

variogram models.

For universal Kriging the first order 90-100% global

detrending was done to obtain the optimum results. The

trend in the data was evident in Fig. 5. Moreover, 100%

global second order detrending also produced better results.

Semivariogram model parameters are calculated using

least squares method applied to the data. Table 2, lists

the optimal estimates of the parameters of the variogram

models used in this study.

In most cases 11 neighbours with minimum of 4 neigh-

bours were selected and produced the best results in

terms of RMSE, R, MAE for the respective model.

Results and Discussion

The surfaces appreciably differ among various methods

so it is rather difficult to decide on a good interpolation

method only by observing the corresponding surfaces.

Table 3 compares all the interpolation methods selected

for this study, the results show that the family of

stochastic methods are better as compared to deter-

ministic methods. Among stochastic, simple Kriging

using Gaussian model (Sk-Ga) with lowest values of

bias and mean absolute error and highest correlation

coefficient can be ranked at first place in the ranking

of optimal methods for current dataset. Universal Kriging

using Gaussian model (Uk-Ga) has also shown good

values for the measured parameters and may be ranked

at second place in the ranking of optimal methods.

Universal Kriging with spherical model (Uk-Sp) is also

good but have higher bias as compared to the other two.

This result is coherent with various previous studies

which found Kriging to be the optimal method for

groundwater observations (Varouchakis and Hristopulos

2013; Sun et al., 2009; Theodossiou and Latinopoulos,

2006; Naoum and Tsanis, 2004; Anderson, 2000).

Error-plots. Table 4 shows the error-plots depicting

the areas of over-prediction and under-prediction. In

measured versus predicted graphs, the grey-dotted line

Table 2. Optimal estimates of semivariogram model

parameters obtained through least square fit

Method Partial Nugget Major Aniso- Direction
sill range tropy

(m) factor

Ok-Sp 78.924 5.7 22578 2.1384 46.3°

Ok-Ex 80.017 0 22639 1.9629 46.5°

Ok-Ga 80,687 14.504 22585 2.3713 46.2°

Sk-Ci 81.242 5.6289 12322 1.2 48.6°

Sk-Sp 83.297 5.3551 14475 1.3 49.3°

Sk-Ex 81.72 0 15176 1.5 48.5°

Sk-Ga 68.9 12.264 14668 1.6 48.6°

Uk-Ci 25.375 9.346 8887 1.05 85.6°

Uk-Sp 26 8.907 10073 1.08 84.4°

Uk-Ex 31.112 5.634 12569 1.3 84.8°

Uk-Ga 24.343 13.2 12457 1.5 85.2°

Table 3. Statistical results for efficiency of different

Interpolation methods for used dataset

Method Bias RMSE MAE ASE RMSSE R
(m)

IDW 0.02623 3.418 2.0443 N/A N/A 0.895078

Spline 0.0513 3.341 2.0262 N/A N/A 0.892455

Ok-Ci 0.03.00 3.336 1.999 3.49 0.975 0.900345

Ok-Sp 0.03878 3.350 1.994 3.324 1.041 0.89953

Ok-Ex 0.02825 3.857 2.194 2.69 2.999 0.868337

Ok-Ga -0.1336 3.288 2.090 3.942 0.8326 0.90354

Sk-Ci 0.04673 3.357 1.994 3.368 1.029 0.89914

Sk-Sp 0.0485 3.363 1.996 3.339 1.045 0.898744

Sk-Ex 0.0363 3.800 2.192 2.811 3.111 0.871576

Sk-Ga 0.00997 3.190 1.95 3.216 0.961 0.94340

Uk-Ci -0.07075 3.280 2.059 3.586 0.8963 0.90900

Uk-Sp -0.0925 3.224 2.010 3.35 0.912 0.91700

Uk-Ex -0.06617 3.292 2.097 3.291 1.034 0.90340

Uk-Ga -0.0652 3.212 1.971 3.353 0.939 0.92840

RMSE = root mean square error; MAE = mean absolute error;

ASE = average standard error; RMSSE = root mean square

standardised; R = correlation coefficient; Ok = ordinary

Kriging; Sk = simple Kriging; Uk = universal Kriging;

Ci = circular model; Sp = spherical model; Ex = exponential

model; Ga = Gaussian model.

Fig. 5. Global trend in the data used in universal

Kriging.
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* = solid line (blue) is the trend line of the points and dotted line (grey) is zero residual line.

Table 4. Table of error-plots of each interpolation method
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represents zero residuals (measured equal to predicted)

and the solid blue lines represent the trend lines of the

measured versus predicted scatter-plots. In all of these

methods, the lower values are over-predicted and the

higher values are under-predicted, as shown by the blue

line above the grey line. The amount of over-prediction

and under-prediction shown by the separation between

the blue and grey lines along with the position of the

zero residual point (intersection of blue and grey lines)

can give a good indication of the better interpolation

methods.

The intersection point of the two lines is farthest along

the X-axis for IDW at about 3.31 and for spline at about

3.00. The intersection point is comparatively closer to

origion along X-axis for the class of Kriging at about

2.71. Similarly, the degree of separation between the

lines is greater for deterministic methods and lesser for

stochastic methods. Among stochastic Sk-Ga, Uk-Sp

and Uk-Ga have least separation between the lines as

compared to others. The slight difference in separation

of these three types is not noticeable. However, statistical

results suggest that Sk-Ga lines should be slightly closer

than Uk-Sp and Uk-Ga.

Contour analysis. In Fig. 6 the contours clearly dem-

onstrate that values at locations are very much dependent

upon the adopted interpolation method. IDW and spline

contours are somewhat similar and have a very edgy,

irregular and abruptly changing behaviour, which is not

possible for an aquifer consisting primarily of different

types of sand (Mahmood et al., 2013). Actually, the

study area is underlain by unconsolidated alluvial

deposits of Quaternary age and the aquifer is composed

of unconsolidated alluvial complex (Basharat and Rizvi,

2011). The Lahore aquifer is unconfined alluvium with

a thickness of about 400 m (1300 ft) (Mahmood et al.,

2013; Gabriel and Khan, 2006). Despite its heterogeneity,

the alluvial sediments constitute a large aquifer, which

on regional basis behaves as a homogenous and highly

transmissive aquifer (Gabriel and Khan, 2006). A number

of studies have reported the formation of a depression

zone in the central part of the study area (Mahmood

et al., 2013). The best method of interpolation of ground-

water level observations must be the one that has ability

to show these declining regions more descriptively.

For IDW and spline the central contour of 42 m around

the area of Shadman, Lahore, is quite edgy and has

been split into two contours. The left one is more

squeesed. There are no defined contours in lower right

and central right portions. Not much variation is

detected thereby these methods. All Kriging contours

are more regular and do not have abrupt edges and

turns, as expected for groundwater depth values in a

region of almost similar elevation and population

density (central city region). The central region of

42 m depth has a single continuous contour in case of

three optimal methods (Sk-Ga, Uk-Sp and Uk-Ga).

However, the existence of depression at centre of the

city, surrounded by gradual rise in groundwater levels

(Mahmood et al., 2013) has been addressed by Sk-Ga

with more elaborated details.

Analysis of uncertainity. The standard deviations of

the estimation errors for the different interpolation

surfaces are shown in Table 5 and can be used to assess

the uncertainty in the predictions. The best value is

again for the simple Kriging with Gaussian model of

3.09. Uk-Ga is ranked second and Uk-Sp is ranked

at third place. The median absolute deviation is a

goodness of fit statistic, lesser its value, better is the

fit of the model to data. The most suited values of

median absolute deviation are highlighted by yellow

background in Table 5.

Kriging variance. Kriging variance is the square of the

Kriging standard error map. Thus the distribution of

the Kriging variance throughout the predicted surface

can be observed. The output variance of prediction raster

contains the Kriging variance at each output raster cell.

Low values within the output variance of prediction

raster indicate a high degree of confidence in the

predicted value. High values may indicate a need for

more data points. Fig. 7 shows the distribution of the

standard error and hence, the Kriging variances for

the two optimal methods of this study (simple Kriging

using Gaussian variogram and universal Kriging using

Gaussian model). Maximum variance is observed in

the lower right portion, which is highly under-sampled.

Therefore, further sampling within this region can

improve the prediction statistics. The most reliable

estimates are in the central region of high depth values,

where sampling locations are clustered together. The

variance classes are elongated in the same direction of

continuity as observed earlier. Overall the range of

standard error surface for simple Kriging is much less

than the range for the universal Kriging surface, hence,

the estimates from the simple Kriging using Gaussian

model are more reliable than the former.
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Fig. 6. Contours for the final interpolation surfaces.
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Table 5. Measured values of uncertainty parameters

Method SD of Median absolute Method SD of Median absolute

(measured vs.) estimation error deviation (measured vs.) estimation error deviation

IDW 3.424 1.202 Sk_Sp 3.369 1.122

Spline 3.312 1.200 Sk_Ex 3.806 1.254

Ok_Ci 3.341 1.175 Sk_Ga 3.099 1.1

Ok_Sp 3.356 1.100 Uk_Ci 3.227 1.088

Ok_Ex 3.864 1.214 Uk_Sp 3.214 1.058

OK_Ga 3.291 1.206 Uk_Ex 3.297 1.088

Sk_Ci 3.362 1.118 Uk_Ga 3.199 1.101

Conclusion

The above analysis shows that Kriging performs better

for groundwater observations. Among Kriging types,

simple Kriging with Gaussian variogram model is found

to be the optimal interpolation method for the datasets

used in this study. However, universal Kriging with

Gausian variogram model and universal Kriging with

Spherical variogram model may be ranked at second

and third places, respectively. It is also observed that

using appropriate variogram model, stochastic methods

perform better than deterministic methods. Kriging

variance has clearly shown that density of sampling

location has strong influence on accuracy of the pre-

dicted value at the location. This study also concludes

that contour pattern analysis on the basis of known

variations in the physical variable under study can also

serve as a tool of optimisation of the interpolation

technique.
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Fig. 7. Prediction standard error maps for Sk-Ga (A) and Uk-Ga (B).
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