
Introduction

Forest biomass can be estimated by two basic

approaches, the first one is in-situ forest inventory

method and the second the proxy estimation through

remote sensing (RS) techniques. The former one (forest

inventory) is no doubt has more accuracy (Lu et al.,

2016) but these methods have many limitations such

as they are time consuming, require labour, implemen-

tation become difficult for large areas and have spatio-

temporal constrains (Lu et al., 2016; Henry et al., 2011).

Traditional inventories are also destructive in nature

for developing proper allometric equations. On the other

hand, remote sensing techniques are favoured because,

it can minimize the aforesaid limitations of in-situ forest

inventory (Shi, 2010). Remote sensing data can provide

wall-to-wall coverage of large forest areas in both spatial

and temporal context. Although remote sensing provide

spectral information from space; large distances from

the earth (forest resource) thus it provide only proxy

estimation. That�s why remote sensing methods required

in-situ forest inventory data for reliable estimation.

Biomass prediction and mapping can only be accurate

and precise when field attributes are combined with

spectrally-derived information (indices) from sensor

reflectance (bands) (Pandit et al., 2018). Thus integration

of remote sensing and field inventory can be improve

the accuracy and biomass can estimated for large areas

at various scales and time. Numerous studies are used

such integration of various remote sensing data (Landsat,

LiDAR, hyperspectral) and field sample plots data for
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above ground biomass (AGB) estimation (Ali et al.,

2018; Imran and Ahmed, 2018; Shen et al., 2016; Dube

et al., 2014; Rana et al., 2014; Chen et al., 2009).

Among remote sensing data (Landsat, LiDAR, Radar,

hyperspectral) the image cost, information volume, data

redundancy, storage and data processing costs limit data

selection and use for AGB estimation (Plaza et al.,

2009). Mathieu et al. (2013) discussed these limitations

of using various remote sensing technologies and

compared it with other medium-resolution data.

Therefore, forest managers have shifted towards cost

effective and freely available open source broadband

remote sensing data including Land sat, MODIS, ASTER

and other recently launched Sentinel-2 (Sibanda et al.,

2015). European Space Agency (ESA) has launched

Sentinel-2 (multi-spectral instrument, MSI) sensor,

which provide improved spatial resolution and spectral

bands combination and high temporal frequency

compared to Land sat sensors (Drusch et al., 2012).

Sentinel-2 sensor comprised of two satellites (Sentinel-

2A and Sentinel-2B), offering 13 spectral band

combinations starting from visible followed by near-

infrared (NIR) to short wave infra-red (SWIR) and these

are available with improved resolution of (10, 20 m)

and 60 m respectively (Wittke et al., 2019). Moreover,

the addition of three red-edge bands which appear

immediately after Red band, provide the Sentinel-2

product high potential for mapping various vegetation

characteristics. These Red-edge bands offer great

improvement for mapping various vegetation charac-

teristics (Cao et al., 2016). Large swath width offered

by Sentinel-2 allow forest managers to quantify AGB

from local to regional scale and carbon accounting can

be timely updated (Majasalmi and Rautiainen, 2016;

Frampton et al., 2013). Such band combination of

Sentinel-2 make it analogous to some marketable satellite

data, such as world view-2, thus Sentinel-2 product has

high potential for applications in forest resource (AGB

and carbon stocks estimation), land management, food

security and precision agriculture, disaster management

and humanitarian relief operations (Chang and Shoshany,

2016). Forest attributes and growth parameters can be

efficiently quantified by using Band 5, Band 6 and Band

7 of Sentinel-2 product. Ramoelo et al. (2015) success-

fully estimated grass nutrients by exploring the potential

of Band 5, Band 6 and Band 7 of Sentinel-2. Similarly,

comparison of Land sat-8 and Sentinel-2 products are

studied by Forkuor et al. (2018) and land use land cover

change was studied in Burkino Faso and reported that

Sentinel-2 image has produced better results than open

source Land sat 8 sensor. Chen et al. (2018) collected

AGB data from in-situ forestry (n=56) in China and

modeled AGB with applying regression models and

machine learning techniques. Nuthammachot et al.

(2018) assessed the potential of various vegetation

indices computed from Sentinel-2 indices and estimated

AGB. The study used forest inventory data of forty five

sample plots and seven Sentinel-2 image based

vegetation indices. Chen et al. (2019) studied AGB for

Bamboo plantations using Sentinel-2 image in Zhejiang

Province, China and reported that Red-edge bands and

NIR bands in Sentinel-2 have improved identification

of key AGB variables. Navarro et al. (2019) integrated

Unmanned Aerial Vehicle (UAV), Sentinel-1, and

Sentinel-2 data for AGB estimation in Mangroves

plantation using 95 ground sample plots. The study

used support vector regression models and demonstrated

that combination of UAV-based estimates with Sentinel-

1 and Sentinel-2 has provided accurate and cost-effective

AGB estimates. Chrysafis et al. (2019) assessed growing

stock volume of Mediterranean forest using the spectral

and spatial information of Sentinel-2. The study deve-

loped regression models for growing stock volume

using spectral bands and other derived spectral and

spatial features from Sentinel-2 images. Astola et al.

(2019) discussed comparison of Landsat-8 and Sentinel-

2 for estimating different forest biophysical variables

which included stem diameter and volume, height of

the tree and tree cross-sectional area, and specie-specific

components of pine, spruce and broadleaved associates.

The study concluded that Sentinel-2 performed better

than Landsat-8 because of its finer spatial resolution

and Red-edge bands presence. Ali et al. (2018) also

used Sentinel-2 image for biomass estimation in Sub-

tropical Scrub forests in Pakistan and compared it with

Land sat-8. The study concluded that Sentinel-2 has

better potential for biomass estimation as compared to

Landsat-8 images. The present study integrated

vegetation indices derived from Sentinel-2 image

(including Red-edge band) and field biomass AGB data

for biomass estimation. The study was conducted in

sub-tropical chirpine forest in Shinkiarii, Pakistan in

2018.

Materials and Methods

Study area. The Shinkiarii forests situated in Mansehra

district of Khyber Pukhtunkhwa province of Pakistan

and are situated between 34°-15' to 34°-38' N and 72°-

20' E. The Shinkiarii forests surrounded by three ranges

i.e. lower Siran, Mansehra, and Hilkot ranges (range is
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area including of pure Chirpine forest (Pinus roxburghii)

with small percentage of Quercus incana in depressions.

Forest inventory comprises 20 samples plots were taken

randomly laid out within forests. The size of each sample

plot was 0.1 ha (1/10th of ha) having 17.84 meters radius

as per departmental protocols (Ali et al., 2018; Imran

and Ahmed, 2018; Nizami, 2012). Different field

equipment�s were used during data collection sampling

which include diameter Calliper, Haga Altimeter, ranging

rods, measuring tape and  Sunnto Compass were used.

Geographical position of each sampling was recorded

by Garmin Global Positioning System (Garmin GPS

30X). Diameter of each tree in every plot was measured

at 1.3 meters (4.5 feet) which is conventional measuring

point in forestry. Haga Altimeter was used for height

of the tree while considering various situations (such

as leening tree, sloping ground, invisible top etc.). The

general eq. 1 used by Haga Altimter, (Ali et al., 2018)

is as follows.

H= (TanA1 + TanA2) × d .......................... (1)

where:

TanA1 is the angle of tree top; TanA2 is the angle of

tree base, �d� is distance from the observer to tree.

Further, volume was calculated from plot wise diameter

and height data. Tree basal area was calculated at 1.3

m above the ground which is actually the cross-sectional

area at DBH point. Tree basal area is measured in square

meters which was simply determined using area of a

circle given in eq. 2.

      Tree basal area (m2) = (DBH/200)2 × 3.142 ..... (2)

where:

DBH is the diameter at breast height (cm) and 3.142 is

p.

The tree basal area was converted into stem volume

(m3) by using height of tree in meter and tree form

factor. The volume (m3) was simply obtained by multi-

plying basal area with height and form factor. Form

factor was conical with value 0.33 (one-third of

cylindrical shape) which was obtained from local volume

table entitled �local volume table of sub-tropical Chirpine

forests Shinkiarii�. The above ground biomass was

obtained by using volume (m3), basic wood density

(BWD) and biomass expansion factor (BEF) using the

formula given in eq. 3. Both BWD and BEF were

obtained from available literature (Ali et al., 2018).

Biomass expansion factor is actually conversion factor

a territorial unit of forest). The highest elevation of

study area reaches 7579 feet (2297 meters) at Siri above

mean sea level, where as the lowest elevation falls down

to 1835' feet at Kalinger area. The topography of forest

covered area is mostly composed of moderate to steep

slopes, while the non-forest area is mostly moderate to

flatter in its nature. The total area covered by Shinkiarii

forests are 3408 hectares which comprised of various

compartments and the area has great potential for tourists

due to its hygienic climate and fascinating green belt

hillside. A number of different species of Wildlife i.e.

monkeys; jackals and birds like partridges etc. are more

common. The main forest species are Pinus roxburghii

(chir) with scattered associates of Quercus incana (oak)

and other broadleaved like Alnus nitida (spach), Morus

alba (mulberry), Poplus ciliata (Poplar) and Robinia

pseudoacacia. In the some areas of community forests

there is abundant pole crop of Pinus roxburghii, whereas

mature trees have severely been depleted because of

anthropogenic pressure. The tract is mountainous;

therefore, the climate is sub-tropical. Generally the

summers are severe at foot fills, while higher up these

are mild and pleasant. The entire tract is within the

reach of summer Monsoons, which generally start early

in July and continue up to mid September, when nearly

half of the annual precipitation is received. Another wet

spell is experienced in the winter months. i.e. from

December to February and during this season snowfall

is frequent particularly above 5000 feet.

Forest inventory. For the present research random

sampling strategy was used and basic statistical principles

(of coverage and representation) were observed. The

EW

N

S

Pakistan
District Mansehra
Forests

EW

N

S

0 560
Km

140  280 840 1,120 10.50 1 2 3 4

Km

Fig. 1. Geographic location of the study area in

district Mansehra, Pakistan.
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which expand stem volume (derived from DHB and

height of stem) to tree volume (extended lateral branches

of the whole tree). BEF was actually used to expand

volume or biomass estimates of merchantable parts (of

stem or main trunk) to non-merchantable parts (branches

of the tree). BEF value of 1.5 was a generic value

derived as per FAO guidelines for sub-tropical cChirpine

forests.

      Above ground biomass (Kg)=V×BWD×BEF ... (3)

where:

V is the volume in m3; BWD is the Basic Wood Density

in Kilograms per cubic meter; BEF Biomass expansion

factor (1.5 for this study).

The volume per hectare values were obtained by

multiplying, it with plot expansion factor, (PEF) which

is 10 (because plot size 0.1 ha). This conversion factor

has been globally used by (Ali et al., 2018; Nizami,

2012). The AGB (t/ha) values were then integrated with

spectral values of Sentinel-2 for regression model

development.

Sentinel-2 image acquisition and processing. The

Sentinel-2A Level-1C (L1C) product (Single tile)

acquired was downloaded from The Copernicus open

access hub. The Sentinel-2 images was acquired for

(path: 150 and row: 36) with minimum cloud cover and

with nearest possible date close to the field survey. The

Sentinel-2 product was an ortho-corrected image in

UTM/WGS 84, 43N projection and having top-of-

atmosphere (TOA) reflectance values (per-pixel radio-

metric values). The Sentinel-2 image was transformed

from sensor radiance to surface reflectance by applying

the bottom-of-atmospheric (BOA) correction and dark

object subtraction (DOS) method using Sentinel

application toolbox (SNAP) software (version 5.0). The

SNAP 5.0 used third party plugin named as Sen2Cor

for the preprocessing of Sentinel-2 image. The atmos-

pheric correction was completed through Sen2Cor

plugin which was installed under the umbrella of

Anaconda Python library in SNAP 5.0. Pre-processing

also removed the atmospheric scattering and dark pixels

in spectral bands during image processing. The Sentinel-

2 image has thirteen spectral bands with three types

spatial resolutions (10, 20, and 60 m) extended from

visible to infrared wavelengths (Ali et al., 2018). In this

research, Band 4 (Red), Band 5 (Red-edge), Band 8

(NIR), Band 12 (SWIR) and Band 13 (SWIR) were

used for vegetation analysis. Moreover, all bands with

lower resolution (Band 6, Band 12, 13) were resampled

to ten m resolution using SNAP 5.0. As original pixel

size of Sentinel-2 bands was 10 m, whereas field plot

size was 0.1 hectar therefore, it was necessary that first

field sample plots and pixel size should be brought to

same size. Mean filter (window of 3 by 3) was applied

to all bands (of spectral indices) to make it equivalent

to field plot size. Further, the image subset was created

to minimize the time of computation. Based on previous

literature (Ali et al., 2018; Adan, 2017), vegetation

indices were selected for their performance in forest

bio-physical studies. Five vegetation indices (VIs) were

selected and computed in SNAP 5.0 using vegetation

radiometric indices tool. These VIs include broadband

indices, canopy water indices and Red-edge band index.

The broadband VIs were Global Environmental

Monitoring Index (GEMI) and Transformed normalized

difference vegetation index (TNDVI). Canopy water

contents VIs includes normalized difference infrared

index (NDII) and normalized difference water index

(NDWI). Whereas Red-edge (RE) band index was RE

normalized difference vegetation index (RENDVI) was

also computed to study the impact of RE band (band

6). The details formulas, bands used and their sources

of all VIs are given in the Table 1.

Table 1. Sentinel-2 derived vegetation indices

Indices Landsat-8 Reference study

Transformed normalized difference vegetation sqrt((NIR�R/NIR+R)+0.5) Nouri et al., 2018

index (TNDVI) Global environment monitoring e(1-0.25 e)-(RED-0.125) / (1-RED) Schultz et al., 2016

index (GEMI) where: e =(2(NIR2 �RED2) + 1.5NIR + 0.5

*RED)/(NIR+RED+0.5)

Normalized difference water index (NDWI) rNIR - rB11/ NIR + rB11 Adan, 2017

Normalized difference infrared index (NDII) rNIR - rB12/ NIR + rB12 Hunt el al., 2012

Red-edge normalized difference vegetation index (NIR-RE)/(NIR+RE) Adan, 2017

(RENDVI)
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Statistical analysis. The relationships of field data and

performance of VIs were assessed through regression

analysis. The dependent variable was AGB (t/ha) and

independent variables were Sentinel-2 image spectral

indices. First, simple single variable (index) based

regression were developed for each of the computed

indices (GEMI, TNDVI, NDII, NDWI and RENDVI)

versus AGB values and four regression models (linear,

power, exponential and logarithmic) were evaluated.

Secondly, stepwise linear regression which used all

indices (as input variables) entered into stepwise selection

and as a result the best index was selected in the final

model. These models were developed in satistical

program for social survey (SPSS) software. The model

selection and performance were based on coefficient

of determination (eq. 4) and level of significance (P-

value). Accuracy assessment was determined by the

root mean square error (RMSE), BIAS and mean

absolute percentage error (MAPE) given in eq. 5, 6, 7,

respectively. The statistical relationship was consi-dered

significant if it�s P-value is less than 0.05.

            n (Sxy) - (Sx) (Sy)
r =   _______________________ .......................... (4)
      Ö[nSx2 - (Sx)2] [nSy2 - (Sy)2]

       1
RMSE = 

Ö
  __ Sn

i=1 (AGB1 - AGB2) ..................... (5)
       n

1
BIAS = __ Sn

i=1 (AGB1 - AGB2) ............................ (6)
n

 100%
MAPE = _____ Sn

i=1 (AGB1 - AGB2 ¸ AGB1) ..... (7)
     n

where:

r = coefficient of correlation; n = number of inventory

plots; Sxy = the sum of the products of AGB and VI;

Sx = total of VI values; Sy = total of AGB values; Sx2

= total of squared VI values; Sy2 = total of squared

AGB values; AGB1 was the AGB value from field

inventory; AGB2 was the predicted value of biomass

by Sentinel-2 VI.

Results and Discussion

Computation of vegetation indices. The vegetation

indices (VIs) were calculated using optical thematic

land processing tool in SNAP 5.0 software. All five

indices and computation process were explained in

methodology. These indices include global environ-

mental monitoring index (GEMI), transformed normali-

zed difference vegetation index (TNDVI), normalized

difference water index (NDWI), normalized difference

infrared index (NDII) and Red-edge normalized

difference vegetation index (RENDVI). The broadband

indices (GEMI and TNDVI) and canopy water indices

(NDWI and NDII) are sensitive to higher biomass

density and have saturation issue, whereas narrow band

index (RENDVI) have overcome this saturation issue

in higher biomass density. Lu et al. (2016) discussed

that accuracy of biomass estimation may have various

uncertainties due to saturation problems of VIs. Adan,

(2017) also reported that narrowband indices have

greater efficiency to differentiate higher biomass values,

while on the other hand broadband indices have

saturation issues. Frampton et al. (2013) demonstrated

that Sentinel-2 has comparatively higher resolution and

the presence of Red-edge bands was very useful for

AGB estimation, forest monitoring and bio-physical

parameters estimation.

Single predictor regression models (Sentinel-2 indices)

Global environmental monitoring index (GEMI).

GEMI was regressed against AGB and four different

regression models were developed including linear,

power, exponential and logarithmic model (Table 2).

According to Table 2, GEMI has shown much less

correlation compared to other indices. The linear model

and logarithmic models have explained 12% of data

variations while, the rest of 88% data variations were

not explained by GEMI models. Similarly, the lower

correlations were observed in other non-linear models

(power and exponential) with the R2 of 0.113. Moreover,

all the models of GEMI have not performance signi-

ficantly as shown in Table 2. The GEMI is broadband

index using Band 4 (Red) and Band 5 (NIR) and have

saturation issue in higher density area as shown in

Fig. 2. Overall, the performance of GEMI was not good

and hence did not as act best model for biomass

estimation. Wijaya et al. (2010) evaluated various

vegetation indices for estimation of stem volume and

above ground biomass using moderate resolution data.

The study reported that GEMI performed better having

correlation (R2) of 0.368 and 0.313 with stem volume

and AGB, respectively. Lu et al. (2004) used GEMI for

various forest attributes estimation and reported that

GEMI has good correlation (R2
 = 0.48) with AGB.

Gupta et al. (2018) demonstrated that mangroves
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vegetation (coastal) can be best modeled by using two

VIs (Modified Soil Adjusted Vegetation Index (MSAVI)

and GEMI). The study also reported that monitoring

was best by using these two indices for Tropical Littoral

forests.

Transformed normalized difference vegetation index

(TNDVI). Four different regression models were

developed including linear, power, exponential and

logarithmic model for TNDVI (Table 2). According to

Table 2, linear model of TNDVI has showed the highest

correlation (R2= 0.392) followed by logarithmic model

with coefficient of correlation of 0.386, whereas power

and exponential models have lower coefficient of

correlation of 0.289 and 0.294 respectively. Compared

to GEMI, TNDVI has good relationship with AGB data

as linear model of TNDVI has explained 39 % of the

data variations. All regression models of TNDVI have

showed significant relationships with AGB as shown

in Table 2. However, TNDVI have less correlation as

compared to canopy water indices (NDWI and NDII).

Therefore, based on performance (R2 values), TNDVI

was not selected as best model for AGB estimation but

nevertheless it may considered as vegetation index for

AGB estimation (Fig. 3). Nouri et al. (2018) used TNDVI

and other indices to estimates various forest attributes

(density of forest, canopy closure and basal area) and

reported correlation of 0.90 for TNDVI and NDVI.

Ahmad (2012) also used TNDVI for quantitatively

evaluation of dense and sparse vegetation using Landsat

ETM+ in Cholistan Desert. Chen et al. (2018) has

estimated AGB in Changbai Mountains, China and used

various predictive for biomass estimation. The study

estimated AGB by combined used of Sentinel-1,

Sentinel-2 and Digital Elevation Model (DEM) and

showed that TNDVI was one of the important vegetation

index derived from Sentinel-2 index. Alrababah et al.

(2011) estimated forest parameters (crown percentage

and above ground biomass) in Meditarranean forest in

Jordan using Landsat data. The study reported that

TNDVI (computed from Landsat image) has significant

high correlation of 0.8 and was selected to map volume

and crown cover.

Normalized difference water index (NDWI). Four

different regression models were developed including

linear, power, exponential and logarithmic models when

Sentinel-2 computed NDWI was regressed against AGB

(Table 2). The spatial distribution of biomass has been

shown in Fig. 4. As shown in Table 2, NDWI has shown

highest correlation as compared to other indices (GEMI,

TNDVI, NDII and RENDVI). The linear model of

NDWI was considered best for biomass mapping

because it has highly significant relation with AGB

(P value=0.05) with correlation (R2 =0.469). The rest

of models also performed well; logarithmic model has
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correlation of 0.351 with P-value of 0.20 followed by

exponential model with correlation of 0.328 (P-value

=0.26). The lowest performance was shown by power

model which explained only 25% of the data variation

(R2=0.25) with significance value (P-value = 0.55).

Therefore, among the four regression models, only

power model was insignificant and become unsuitable

for biomass estimation. Adan (2017) reported that

NDWI has better performance as compared to NDII

and NDWI has explained about 31% of the variation

(R2= 0.311) in linear regression model. Similarly, in

non-linear relationship, NDWI has also slightly better

performance than NDII with R2 of 0.30.

Normalized difference infrared index (NDII). NDII

was computed from Sentinel-2 image using Band 13

(SWIR) and Band 4 (Red) and the resultant values at

sample plots locations were regressed with field data

(Fig. 5). Four different types of regression models were

developed including one linear and three non-linear

relationships (power, exponential and logarithmic) as

shown in Table 2. As depicted in Table 2, linear model

of NDII shown the highest correlation with AGB having

R2 value 0.44 and the level of significance was also

best (0.007). Thus the linear model explained 44% of

data variation while 56% of the AGB data was remained

unexplained. Regarding to non-linear models, the

Table 2. Summary of regression models of vegetation indices

   Global environmental monitoring index (GEMI)

                             Model summary           Parameter estimates

Equation R square F Sig. Constant b1

Linear 0.124 1.846 0.197 -523.216 1.237E3

Logarithmic 0.124 1.840 0.198 553.038 662.226

Power 0.113 1.655 0.221 2.558E3 4.759

Exponential 0.113 1.653 0.221 1.129 8.873

                              Transformed normalized difference vegetation index (TNDVI)

Linear 0.392 8.398 0.012 -950.373 1.055E3

Logarithmic 0.386 8.172 0.013 104.819 1.083E3

Power 0.289 5.292 0.039 104.571 7.059

Exponential 0.294 5.406 0.037 0.108 6.873

     Normalized difference water index (NDWI)

Linear 0.469 11.473 0.005 69.653 711.333

Logarithmic 0.351 7.039 0.020 273.278 54.518

Power 0.255 4.456 0.055 309.516 0.350

Exponential 0.328 6.336 0.026 84.492 4.478

      Normalized difference infrared index (NDII)

Linear 0.441 10.249 0.007 -26.281 542.541

Logarithmic 0.404 8.827 0.011 333.345 160.945

Power 0.296 5.457 0.036 456.836 1.036

Exponential 0.318 6.050 0.029 45.448 3.468

                              Red-edge normalized difference vegetation index (RENDVI)

Linear 0.378 7.905 0.015 -128.166 738.708

Logarithmic 0.354 7.130 0.019 404.853 259.748

Power 0.252 4.380 0.057 707.605 1.650

Exponential 0.267 4.728 0.049 24.132 4.672

where:

�F� means F-statistic named in honor of Ronald Fisher; �b1� is the slope of regression line; �R� is coefficient of correlation;

�Sig� is value of significance; Dependent variable was AGB and independent variables were GEMI, TNDVI, NDWI, NDII

and RENDVI. Best Index among five indices was NDWI.
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logarithmic model perform well with R2 of 0.404 and

P-value 0.11; followed by the exponential model with

R2 value of 0.318 (P-value=0.29). The least correlation

was shown by power model with correlation (R2=0.29)

which explained only 29% of data variation. However,

the power model of NDII has performed significantly

with AGB as compared to power model of NDWI which

was not significant. Adan, (2017) has reported perfor-

mance of NDII was less than NDWI with correlation

(R2 = 0.22) in linear relationship, while it has bit better

correlation (R2 = 0.24) in non-linear relationship. Hunt

et al. (2012) explored that NDII has better efficiency

to express canopy water contents and can be used for

vegetation monitoring.

Red-edge band normalized difference vegetation index

(RENDVI). RENDVI was computed from Sentinel-2

image by using Red-Edge Band (Band 6) and NIR band

(Band 8) as shown in Fig. 6. Sentinel-2 has three Red-

Edge bands (Band 5, Band 6 and Band 7) which are in

addition to Red Band and can be used for vegetation

biophysical parameters. Four different regression models

were developed for RENDVI including linear, power,

exponential and logarithmic model (Table 2). According

to Table 2, RENDVI has shown better as compared to

broadband indices (GEMI and TNDVI) because

RENDVI used narrowband combination. The linear

model and logarithmic models have explained 37% of

data variations followed by exponential model which

explained 35% of AGB variation. Similarly, the lower

correlations were observed in other non-linear models

(power and exponential) with the R2 of 0.25 and 0.26.

Adnan, (2017) has reported bit higher correlation for

RENDVI (R2=0.59) in linear relationship while in non-

linear regression model that correlation was increased
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to 0.61. Thus explaining 61 percent of data variation

and was considered best compared to broadband indices.

Slonecker et al. (2009) demonstrated that narrowband

(Red-edge) was more sensitive to leaf internal structure,

properties and chlorophyll contents. Zhao et al. (2007)

and Chen et al. (2007) have comparatively assessed the

performance of NDVI, Simple ratio (SR) and Red-edge

indices for biophysical parameters estimation. They

reported that Red-edge band inclusion in vegetation

indices have significantly increased the correlation (R2

values).

Stepwise regression model (Sentinel-2 indices).

Stepwise linear regression was used for best index

selection for biomass mapping while considering all

explanatory variables (GEMI, TNDVI, NDWI, NDII

and RENDVI). The stepwise linear regression uses

probability for selection in prediction model by

considering the criteria, variable is selected when the

significance is less than 0.50 and it is removed when

it is greater than 0.10. The summary of stepwise

correlation between AGB (dependent variable) and

five indices (GEMI, TNDVI, NDWI, NDII, RENDVI)

has been shown in Table 3. Similar to simple linear

regression, NDWI was also selected in stepwise process

whereas the other four indices were removed because

they are not significant. The overall model explained

46% of the data variations and the rest of 54% data

remained unexplained (R2 was 0.46 and adjusted R2

was 0.42 with 38.07 standard error). The correlation

matrix depicted strong correlation between AGB and

Sentinel-2 vegetation indices. The coefficient of

correlation (R2) for GEMI, TNDVI, NDWI, NDII and

RENDVI were 0.35, 0.62, 0.68, 0.66 and 0.61 respec-

tively. Previously, Imran and Ahmed, (2018) demon-

strated stepwise linear regression for Landsat-8 spectral

indices (NDVI, SAVI, PVI, DVI and ARVI) and AGB

(t/ha) for the district Manshera in Pakistan. The study

reported that stepwise linear regression was a robust

method for best index selection for AGB estimation

and reported coefficient of correlation (R2 =0.63 and

Adjusted R2 was 0.60).

Accuracy assessment and biomass mapping. Normal-

ized difference water index (NDWI) was selected for

biomass estimation as it was considered best spectral

index in single predictor regression model and stepwise

linear regression model. The accuracy of linear model

of NDWI and AGB was assessed by root mean square

Error (RMSE), RMSE%, BIAS, BIAS% and MAPE%.

As per selection condition, the RMSE and RMSE% of

NDWI was equal to 28.27 (t/ha) and 28%, respectively.

Similarly, BIAS, BIAS% and MAPE% were 20.44,

13.82% and 19.82% respectively. The resultant biomass

Table 3. Stepwise linear regression (AGB versus indices)

       Correlations

AGB RENDVI GEMI TNDVI NDWI NDII

AGB 1.000 0.615 0.353 0.626 0.685 0.664

RENDVI 0.615 1.000 0.157 0.991 0.981 0.976

GEMI 0.353 0.157 1.000 0.124 0.145 0.167

TNDVI 0.626 0.991 0.124 1.000 0.970 0.965

NDWI 0.685 0.981 0.145 0.970 1.000 0.987

NDII 0.664 0.976 0.167 0.965 0.987 1.000

                    Variables selection     Model summary

Entered Removed Significance R R Square Adjusted R Square Std. error of the estimate

NDWI 0.005 .685a .469 .428 38.071

RENDVI 0.152      Model coefficients

GEMI 0.218 Unstandardized coefficients

TNDVI 0.460 B Std. Error t Sig.

NDII 0.724 69.653 23.340 2.984 0.011

711.333 210.009 3.387 0.005

where:

�R� means correlation; �R Square� is coefficient of correlation; �B� is beta value which represent slope of regression line; �t�

is the value of t-statistic; �Sig� is value of significance; Model equation: AGB = 69.653+711.333*NDWI.

Dependent variable: AGB; Stepwise method (variable selected <= .050 and removal >= .100).
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map was generated in ArcGIS 10.3 software using

Raster Calculator tool. NDWI based map AGB map

has been shown in Fig. 7(a), which shows that AGB

range from minimum (0) to maximum (339 t/ha). Mostly

AGB was present in northern upper part of the study

area and the resultant biomass was also compared to

global forest maps. Global forest tree cover map (GFTCM)

showed percent tree cover and range from 0 to 98%

forest cover in the study area Fig. 7(b). GFTCM also

showed higher forest density towards northern part and

some forest patches in the southern side. Similarly,

Global LiDAR 1 km forest canopy height showed height

of forest canopy and values range from 0 in the south

to higher (i.e 36 meters) in the northern parts of the

study area Fig. 7(c). The present study AGB spatial

distribution map was in consistent with both global

vegetation maps which showed that AGB map was

developed correctly.

Conclusion

This study investigated the forest above ground biomass

prediction and modeling by utilizing Sentinel-2

vegetation indices in District Manshera, Khyber

Pukhtunkhwa province, Pakistan. Sentinel-2 is the state-

of-art sensor with refined spatial and frequent temporal

resolution which makes it more useful for AGB

estimation as compared to broadband multispectral

sensors such as Landsat-8 (Ali et al., 2018); however

Landsat-8 bands may perform better low resolution

bands of Sentinel-2 (such as 60 m). Sentinel-2 data

(Copernicus Open Acces Hub) provides wider acces-

sibility and additional spectral bands when used in

integration with robust commercial datasets such as

world view-3 and Sentinel-1 or Synthetic Aperture

Radar (SAR) can enhance AGB estimation reliability.

This study concludes the Sentinel-2 spectral indices

have good relationship with field AGB plot wise data

and can effectively predicted AGB of the Mansehra

forests. The best index NDWI has shown an R2 value

0.46 and an RMSE value of 28.27 t/ha and the remaining

four indices (GEMI, TNDVI, NDII and RENDVI)

performance were also satisfactory and can be used for

biomass mapping over the study area, the inclusion of

Red-edge band index also improve the correlation and

can be used in determination of biophysical parameters

and other forest/tree attributes such as crown, crown

cover, volume and basal area.  The present study suggests

further in-depth work in the future using Sentinel-2 in

national forest inventory to monitor temporal changes

in AGB and carbon stocks. Sentinel-2 has high temporal

resolution which is useful for reporting and measuring

carbon emissions in future for implementation of forest

conservation projects. Additionally, the present study

also suggest applying the Red-edge bands available in

Sentinel-2 to various vegetation parameters can further

enhance AGB estimation. Therefore, Sentinel-2 sensor

can be used as a decisive tool to assess and monitor

AGB at local and regional scale. This state-of-art sensor

should be further utilized and explored in studying the

carbon accounting measurements and vegetation

properties in Pakistan�s forests and can provide best

alternative data when use of commercial data is not

available. It is, therefore, more detailed studies are

needed to be performed to develop local, regional and

national maps of different forest ecosystems.
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