
Introduction

The oxidation catalysis is one of the most important

processes in industrial chemistry (Cornils et al., 2018;

Sies, 2017; Vasilios et al., 2016; Jan and Stefano, 2015;

Mario and Oxana, 2013; Howard, 2000) which have

several research papers and patents give evidence to

the fact that the role of catalysis in exploration of new

industrial processes has been phenomenal. Redox

reactions have extensively been employed in building

of new catalytic processes. Simultaneously, these

reactions have widely been studied and investigated in

research laboratories. Catalytic processes usually require

transition metal  ions and their complexes as oxidation

catalyst to produce desired product with high selectivity

and yield (Gorlin et al, 2017; Stanley, 2017; Zheng

et al, 2017; Punniyamurthy et al., 2005).

Transition metals ions and their complexes have been

established to use as an efficient oxidation catalyst when

used in homogenous reaction system (Breuil et al.,

2015; Catherine and Kogularamanan, 2015; Janes, 2015;

Slone et al., 1999; Couty and Hall, 1996). Among

hundreds of transition metal complexes, cobalt ions

Co(II) and Co(III) and its complexes and redox couple

Co(II)/Co(III) has widely been studied during last few

years (Li and Ackermann, 2015; Zhang et al., 2014;

Westerhaus et al., 2013) low valent Co(II) is used for

C-H transformations and high valent Co(III) is employed

as C-H functionalization. Their redox couple is efficiently
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used in hydrosilylation of alkenes (Hui et al., 2016;

Hui et al., 2016; Jie, 2016; Ruhuai et al., 2016; Ruhuai

et al., 2016; Zell et al., 2015; Li and Ackermann, 2015;

Parthasarathy and Chien-Hong, 2015). This couple is

also employed as oxidation catalyst in the production

of hydroperoxides which is subsequently used in

petroleum industry (Khan and Naqvi, 2021).

Materials and Methods

Glass ware. All experiments were performed using

standard laboratory class A Pyrex volumetric glassware.

Chemicals. Cobalt(II) acetate tetrahydrate pro-analysis

grade, potassium iodide extra pure, sodium thiosulphate

were supplied by Merck, potassium chlorate AnalaR

Grade by BDH, potassium chloride by Baker, J.T.,

sodium carbonate extra pure by Scharlau, glacial acetic

acid and propanol were supplied by Sigma Aldrich. All

chemicals were prepared in triple distilled water except

Cobalt(II) acetate which was prepared in glacial acetic

acid.

Experimental setup. Experimental setup is schema-

tically described in Fig. 1.

Designing and fabrication of jacketed reaction vessel.

A 50 mL jacketed glass reaction vessel has indigenously

been designed and fabricated to study the electron

transfer reaction between Cobalt(II) and chlorate ions.

Vessel is designed with the provision of three necks.

Thermometer is placed with stopcock in first neck.

Burette containing sodium thiosulfate for titration is
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allowed to enter from second neck and reaction quen-

ching reagent is transferred from jacketed column,

which is adjusted at the third neck of the reactor.

Jacketed reaction vessel is placed over magnetic stirrer

for providing uniform stirring by means of magnetic

follower which is rotating inside the reaction vessel.

Automatic pipettes are employed for the transfer of

reactants into the reactor. All the reactions are carried

out at constant temperature, for this purpose the outer

jacket is connected with thermostatic bath 1 to provide

counter current flow of water at required temperature.

The reaction quenching jacketed column is also con-

nected with another thermostatic bath 2.

Preparation of reaction quenching reagent. At

specified time, reaction between cobalt(II) and potassium

chlorate is quenched with specially prepared reagent.

This reaction is highly pH dependent favoured by low

pH. This adjustment of pH is going to be achieved by

dissolving sodium carbonate in aqueous acetic acid

solution heating is provided to expel carbon dioxide,

resulting solution contains sodium acetate buffer.

Calculated amount of potassium iodide is also introduced

into the reagent. Reaction is instantaneously quenched

by transferring the quenching reagent directly into the

reactor from jacketed column at specified time. The pH

of reagent is going to facilitate iodine liberation which

is then titrated against standardized sodium thiosulphate

and turns greenish colour of cobalt(III) to vibrant purple.

Production of redox couple. Kinetic analysis of the

reaction between potassium chlorate (used as an

oxidizing agent) and cobalt(II) acetate tetra hydrate

follows a simple and single phase ionic reaction:

      ClO3
- + 6Co(II) + 6H+   6Co(III) + Cl- + 3H2O

This reaction generates a redox couple of Co(II) / Co(III)

usually named as partially oxidized catalyst (POC),

provides a method for the preparation and purification

of Co(III) ions.

Design of experiment (DOE). A central composite

design (CCD) of experiment (DOE) has been constructed

to vary the concentrations of Co(II) and chlorate in a

systematic way during kinetic experiments. It was neces-

sary to carefully study the effects of the concentration

of reactants upon the concentration of Co(III) and the

rate of production in time domain during reaction system

design of experiment (DOE) was introduced at the early

stage of experimental work for the exact determination

of redox couple of Co(II)/Co(III). This DOE gives

simple and easy understanding of the reaction pattern.

All the experiments are designed on the basis of central

composite design which incorporates partial factorial

design, star design and replication.

This DOE not only used for the development of analy-

tical technique for the estimation of redox couple but

also provide reduced number of experiments with the

possibilities to evaluate interactions among variables.

These techniques also enable the selection of optimal

experimental conditions, helping to avoid trivial mistakes

during optimization.

Results and Discussion

A significant part of this academic research has been

dealt with the collection of experimental kinetic data

during the oxidative conversion of Co(II) to Co(III)

using chlorate as an oxidizing agent in acetic acid

solution. Such kinetic data consist of the concentrations

of Co(III) in the time domain and the corresponding
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Fig. 1. Schematic diagram of jacketed glass reac-

tion vessel.
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rates of production there of as function of temperature

and initial concentrations of the reactants.

Synthesis of Cobalt(II/III)

The reaction was studied under time domain for 45

min. The data was collected at 75, 80, 85, 90 and 95

°C. 3-D surface plot (Fig. 4) shows the response of

Co(III) yield against time and temperature. The red

peak shows the maximum conversion of Co(II) into

Co(III). This peak is observed at 85 °C maximum yield

is obtained during first 10 min. This method gives the

flexibility of generating of redox couple Co(II)/Co(III)

of different compositions. In (Fig. 2) differential kinetic

analyses is used for fitting the kinetic data. Concentration

of redox couple and rate of consumption of Co(II) is

then plotted against time. Rate of conversion of Co(II)

to Co(III) is calculated by drawing tangents at selected

concentrations. In (Fig. 3) plot between natural logarithm

of rates against natural logarithm of concentrations of

Co(II) follows the equation of straight line, slope gives

the order of reaction and rate constant is obtained from

y-intercept.
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Fig. 2. Kinetic analyses of the experimental kinetic

data, reaction conditions: T = 85 °C, CCo(II)

= 8.3979´10-3 mol/L, CH2O = 0.5 mol/L,

VR = 30 mL.
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initial rate and concentration of Co(II),

reaction conditions: T = 85 °C, CCo(II) =

8.3979´10-3 mol/L, CH2O = 0.5 mol/L, VR

= 30 mL.
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Fig. 4. Response surface shows the yield of Co(III)

with respect to time and temperature.

Based on the present research work it is concluded that

a straight forward and ample technique has been

established for the production of redox couple which

is used as a potent catalyst in the formation of hydro

peroxides which is a well knows intermediate in

homogenous catalytic oxidation of hydrocarbons. This

technique also provides a sophisticated and reliable

method for the determination of Co(III) ions.

Conclusion

It is also concluded that the kinetics of above reaction

has been keenly observed and studied and a compre-
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hensive method is developed to get the overall order of

the reaction with respect to time. Present research has

pointed out the necessary requirement for a good reaction

medium and recommended the use of glacial acetic

acid.
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