
Introduction

The analysis of heat transportation and boundary layer

flow past a stretching sheet has a considerable value in

manufacturing and industrialization process e.g. heat

exchange process, power supply in electronic devices

and also in vehicle engine cooling system. Crane (1970)

was a predecessor in analyzing the mechanized process

related to heat transport and laminar flow of boundary

layer over a stretching sheet. Afterward, numerous

research scholars (Ahmad et al., 2020a, b, c, d & e;

Ghadikolaei et al., 2018; Yacob and Ishak, 2012)

have examined various stretching sheet problems.

Besides a rich literature is available on ferrofluid flows

comprising of spatially varying field over stretching

sheets. Ferrofluids are synthetic fluids experiencing a

magnetization force. The magnetization of ferrofluids

is temperature dependent and this thermomagnetic

coupling property leads the ferrofluids towards signi-

ficant fluids in manufacturing and industrialization

(Tangthieng et al., 1999; Eringen et al., 1990). Ferro

hydrodynamics can be distinguished from magneto-

hydrodynamics because of the existing of spatially

varying field. It is essential to synthesize innovative

fluids for bio-technology, engineering and geophysics.

Ferrofluids, also known as magnetic fluids, which are

significantly purposeful fluids. These fluids are

chemically stable colloidal suspensions entailing the

magnetic particles with a diameter ranging from 5-15

nm (Papell and Stephen, 1965). Because of this diameter

size of magnetized particles, these fluids may also called

magnetic nanofluids. Ferrofluids act like nanoparticles

to strengthen thermal properties of fluid. Magnetic field

changes the physical characteristics of ferrofluids e.g.

temperature distribution. This property makes the

ferrofluids much functional in various industries e.g.

engineering and biomedical sciences.

The magneto-hydrodynamic phenomenon is widely

used in the fields of astrophysics, engineering, geo-

physics and aerospace engineering. Examples includes

photochemical reactors, plasma confinement, fiber

coating, transportation, magnetic drug targeting, heat

exchangers, electromagnetic casting, x-rays, cooling of

nuclear reactors, sensors and so forth. During the past

few decades, the problems of magneto-hydrodynamic

fluid flows with heat transport have been intensely

studied. Recently, an analysis of MHD axisymmetric

micropolar nanofluid flow through porous parallel disks

was presented by Abbas et al. (2019) with the results
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that the radial velocity curves rise up near the disks and

diminish at the central plane. Rauf et al. (2019) evaluated

the combined effects of Cattaneo-Christov mass and

heat flux on MHD three dimensional fluid flow over

an oscillatory disk. They obtained the solution of highly

nonlinear ODEs with the help of finite difference

discretization along with successive over relaxation

(SOR) method. Shamshuddin and Thumma (2019)

solved a mathematical model of MHD dissipative

micropolar fluid flow through porous medium by

exploiting finite element method and found that the

escalating values of microrotation parameter suppress

the microrotation velocity profile. Taking into account

the occurrence of thermal radiation, temperature

dependent slip condition and viscous dissipation in

MHD two dimensional fluid flow, Gangadhar et al.

(2017) made an effort to provide mathematical solution

of the problem using bvp4c MATLAB solvers. Bhatti

et al. (2016) deliberated the combined effects of entropy

generation and thermal radiation in MHD non Newtonian

fluid flow past a porous shrinking surface. They obtained

the solution of highly nonlinear ODEs with the support

of Chebyshev spectral collo-cation scheme along with

successive linearization method (SLM). The interaction

of micropolar fluid with the applied Lorentz force inside

a magneto-hydrodynamic micro pump was examined

by Alizadeh-Haghighi et al. (2017). Their results were

compared with the experimental ones and found almost

similar to each other for special cases.

The flows of ferrofluids have been comprehensively

studied by various authors. MHD flow of cobalt-kerosene

ferrofluid, under the influence of partial slip and thermal

radiation, over a non-isothermal wedge was evaluated

by Rashad (2017). In this research, it was found that

local Nusselt number shows a remarkable reduction for

magnetic parameter and enhances intensively in the

presence of surface temperature and thermal radiation

parameters. A mixed convective and magneto-

hydrodynamic ferrofluid flow, with partial slip impacts

and convective boundary conditions, over an impulsively

stretchable sheet was modeled by EL-Kabeir et al.

(2019) and El-Zahar et al. (2019) numerically investi-

gated the natural convective flow of Fe
2
O

4
 ferrofluid

over a vertical radiate plate using stream wise sinusoidal

variation in surface temperature. Using finite volume

method, Chamkha et al. (2020) studied the magneto

ferrofluid mixed convection flow inside a lid driven

square cavity with partial slip. The horizontal moving

walls of the enclosure were kept adiabatic, while the

vertical walls were heated partially by a constant

temperature. The square enclosure was filled with a

mixture of kerosene cobalt ferrofluids. The heat transfer

rate was marginally influenced by augmentation of the

ferromagnetic particles volume fraction. Nabwey et al.

(2020) identified the characteristics of unsteady magneto-

hydrodynamic (MHD) flow of ferrofluid past a radiated

stretching surface.

Bognar and Hriczo, (2018) recently worked on the flow

of ferrofluid under the effect of magnetic field. They

examined the magneto thermo mechanical relations

between a cold wall and heated viscous ferrofluid

theoretically. The fully coupled equations were

transformed into nonlinear coupled ones by employing

similarity transformations. These ODEs were discretized

into an algebraic system of equations which were then

solved by means of Higher Derivative Method (HDM).

Results obtained by Bognar and Hriczo, (2018) were

correlated with those achieved by Neuringer (1966).

Perez et al. (2017) examined the magnetic viscous

effects on the temperature gradient by using oldroyd

model. Eigen values and eigen functions were

determined by solving the dynamical equations

numerically using a collocation spectral method. The

change between oscillatory and static inconstancy was

a little bit affected by magnetic effects. Zeeshan et al.

(2016) and Abraham et al. (2011) explored numerically

the impact of magnetic dipole and heat source/sink on

ferrofluid over a stretching sheet respectively and highly

nonlinear ODEs were solved by shooting method along

with RK fourth order scheme. Abraham and Titus (2011)

suggested that the influence of magneto-thermo

mechanical interaction reduces with the impact of heat

source/sink which causes the reduction of flow and

heat transport rate.

Neuringer and Rosensweig (1964) presented a model

with the statement that the magnetic field vector H is

acting parallel to the magnetization M and Anderson

and Valnes (1998) also assumed that H and M are acting

in the same direction. Analytical work regarding

ferrofluid motion can be studied in reference article

Shliomis (2004) and Muhammad et al. (2017)

premeditated the heat transportation in the ferrofluid

past a stretched surface with temperature variation.

Chyuan (2006) analyzed the thermo-magnetic convection

phenomenon in the ferrofluid.

The purpose of current work is to describe the interaction

of ferrofluid and magnetic dipole over a stretched sheet.
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Initially, Crane (1970) solved this problem for Newtonian

fluid but later on researchers extended this work towards

non Newtonian fluids (Gibanov et al., 2017; Anderson

et al., 1992; Chiam, 1982). Andersson and Valnes (1998)

expanded the professed problem of Crane (1970), taking

into account the effects of magneto-hydrodynamic and

magnetic dipole, in a dynamical problem of non

conducting viscous ferrofluid flow over a stretching

sheet. The object of the present study is to scrutinize

the magnetic structure of fluid flow as well as heat

transport past an extending sheet by taking the effects

of ferro-hydrodynamic and magnetic field along with

other parameters. Our proposed method (SOR) is used

for the first time to solve the flow problem involving

magnetic dipole and ferrofluids. The impacts of the

concerned parameters, involved in the flow model

governing equations, will be illustrated graphically.

Description of physical model. Let us assume two

dimensional steady flow past a stretching sheet and

assume that flow is viscous, laminar and incompressible.

The static B
0 (magnetic field) is normal to V (velocity

field). An extending surface (sheet) causes the motion

of the immobile fluid and the rate at which the surface

is being extended is proportional to a length from a

located position (x=0). The extending surface is placed

at T
w
 (fixed temperature) below T

c
 (Curie temperature)

as appeared in Fig. 1. The dipole produces a magnetic

force of enough strength to concentrate the ferrofluid.

In addition, the centre of dipole is located at y-axis

away from x-axis at distance �a� and whose magnetic

field is specified in the positive x-direction.

Where all abbreviation are describe in below:

u=Velocity component along the sheet; v=Velocity

component normal to the sheet; f=Dimensionless stream

function; c=Constant; Pr=Prandtl number; M=Magnetic

parameter; K=Constant; a=Coordinate along the sheet;

y=Coordinate normal to the sheet; a=Dimensionless

distance; s
e
=Electric conductivity; p=Pressure;

l=Viscous dissipation parameter; r=Density; b=Ferro

hydrodynamic parameter; e=Dimensionless Curie

temperature; C
p
=Specific heat; U=Free stream velocity

of fluid; m
0
=Magnetic permeability; m=Dynamic

viscosity; T=Temperature; H=Applied magnetic field;

k
0
=Thermal conductivity; M=Magnetization;

m=Stretching of sheet constant; h=Dimensionless

coordinate

Under these assumptions and following Rosensweig

(1985), the governing euations might be composed as:

¶v/¶y+¶u/¶x=0 ........................................................(1)

u(¶u/¶x)+v(¶u/¶y)=-(1/d)(¶p/¶x)+(m
0
/r)M(¶H/¶x)+

(m/r)(¶2u/¶y
2
)+{(s

e
B

0

2)/(r)}(U-u)...........................(2)

rC
p
{v(¶T/¶y)+u(¶T/¶x)}+m

0
T(¶M/¶T){v(¶H/¶y)+

u(¶H/¶x)}=k
0
(¶2T/¶y2) ...........................................( 3 )

whereas velocity components (u and v) are specified

along x and y-axis and s
e 

is the electric conductivity;

p denotes the pressure;
 
r is the density; C

p is the specific

heat; U is the free stream velocity of fluid; m
0 is the

magnetic permeability; m is dynamic viscosity; T is

temperature; H is applied magnetic field; k
0 is thermal

conductivity and M is magnetization.

The appropriate boundary conditions (BCs) at y=0

where:

u(x,0)=cx, T(x,0)=T
w
, v(x,0)=0 ...............................(4)

whereas the BCs as y®¥

u(x,¥)=0, p(x,¥)=p
0
-ra2/2(x2+y2), T(x,¥) = T

c
.......(5)

The applied magnetic field H affects the ferrofluid flow,

whose magnetic scalar potential f is defined as

f = a/2p[x/{x2+(y+a2)}2] ........................................(6)

And the components H
x
 and H

y
 corresponding to

magnetic field H are given as

H
x
=-(¶f/¶x)=g/2p[{x2-(y+a)2}/{x2+(y+a2)}2] ..........(7)

Tc

Tw<Tc
a

u

x

y

Fig. 1. Flow configuration model.
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H
y
=-(¶f/¶y)=g/2p[{2x(y+a)}/{x2+(y+a2)}2]............(8)

Since the magnitude of DH is proportional to the body

force so from H=[(¶f/¶x)2+(¶f/¶y)2]1/2 we obtain (after

expanding in powers of x and retaining terms up to

order x2):

¶H/¶x=-(g/2p){2x/(y+a)4} .......................................(9)

¶H/¶x=g/2p[-{2/(y+a)3}+{4x2/(y+a)5}].................(10)

Spatially varying field must exist in the ferrohydro-

dynamic interaction (Neuringer and Rosensweig, 1964).

Ferrofluid is saturated by applying the strong magnetic

field H. The change in temperature as well as

magnetization M is calculated from M=K(T
c
-T) with

the assumption that curie temperature T
c 

is different

from temperature T. Where T
c
 indicates the Curie

temperature and K describes the pyromagnetic

coefficient as suggested by Neuringer (1966) and Amirat

and Hamdache (2012).

Solution procedure. Now, we introduce the

nondimensional coordinates

h=Ö(c/v) y, Y=Ö(cv) xf (h),

q(x,h)º(T
c
-T)/(T

c
-T

w
)=q

1
(h)+x2q

2
(h),...................(11)

p=p
0
-(ra2/2)(x2-y2)

By using Y
 
(stream function), u and v can be related

as:

u=cxf ¢(h), v=-Ö(cv) f(h).......................................(12)

Where prime indicates df/dh and equation (1) is

identically satisfied for u and v given in (12), while

equations (2) and (3) are altered into following ODEs:

f¢²+ff²-f ¢2+M2(1-f ¢)+1-{(2bq
1
)/(h+a)4}=0 ...........(13)

q
1
²+Prfq

1
¢+[{2lb(q

1
-e)f}/(h+a)3]=0.....................(14)

q
2
² -Pr(2f ¢q

2
- fq

2
¢ )+[(2lb fq

2
) / (h+a ) 3 ] -lb (q

1
-

e)[{(2f¢)/(h+a)4}+{(4f)/(h+a)5}]=0......................(15)

Where equal coefficients of x and x2 have been

equated in equation (3). Now the analogous BCs (4)

and (5) become:

f=0, f¢=m, q
1
=1, q

2
=1  At h=0 ...............................(16)

f¢®1, q
1
®0, q

2
®0  As h®¥................................(17)

Here m is stretching of sheet parameter and the remaining

six parameters appear explicitly in equations (13)-(15)

are:

M=Ö{(s
e
B

0

2)/(ra)} is the Magnetic parameter

Pr=mc
P
/k is the Prandtl number

b=(g/2p)m
0
K(T

c
-T

w
)r/m2 is the Ferrohydro dynamic

parameter ...............................................................(18)

e=T
c
/(T

c
-T

w
) is the Dimensionless curie temperature

l=cm2/rk(T
c
-T

w
) is the Viscous dissipation parameter

a=(c/v)1/2a is the Dimensionless distance

Numerical solution using successive over relaxation

(SOR) method. So, as to decide the numerical access,

a typical approach is to change over the equations (9)-

(12) in an initial value problem. Subsequently, shooting

method alongside Runge Kutta (RK) technique might

be consolidated to tackle the first order differential

equations. A genuine deficiency shows up, if the linear

system of ODEs includes widely spread eigenvalues

where RK technique doesn�t function admirably.

Specifically, RK technique endures a lot of trouble to

find solution of a set of differential equations involving

a fast and slow state dynamics. Similarly, shooting

methodology is progressively powerful when the

shooting interval is short and the numerical solution is

exceptionally influenced by the length of the distance

(shooting) interval. In some cases, the calculation gets

unstable even for very accurate estimates of initial

conditions. This attribute may be because of the certain

reliance of the solution on unique (original) initial

conditions. A finite difference approach may not

experience the ill effects of these inadequacies. Along

these lines prior work (Ahmad et al., 2020a, b, c, d &

e; 2019) included a methodology dependent on finite

difference based technique which is not the same as the

typical shooting system.

Using the same idea, the nonlinear equations (13)-(15)

have been solved by employing finite difference

discretization. Some complications may be found in

the numerical solution of the boundary value problems

comprising boundary layer equations, if the outer

boundary conditions are positioned at infinity. The

greater estimation values of the independent variable

may numerically approximate the infinity in the test
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integration. But there is no idea or any general rule to

estimate these values. Choosing a large estimation value

for the independent variable may converge very slowly

or diverge the solution. In the same way, very small

value may not offer the appropriate accuracy in the trial

integration. However, exploiting the SOR method one

can overcome such type of difficulties. The SOR method

is an eminent technique to determine the numerical

approximations of nonlinear and fully coupled

differential equations in no times.

To solve the nonlinear coupled equations (13)-(15)

problem, construct numerical algorithm based on finite

difference technique (Ahmad et al., 2020a, b, c, d &

e). As prescribed by Chamkha (2000), to recede the

order of equation (13) by modifying

q=f¢=df/dh .............................................................(19)

so, that we may write the nonlinear equations (13)-(15)

as:

q²+fq¢-q2+M2(1-q)+1-{(2bq
1
)/(h+a)4}=0 .............(20)

q
1
²+Pr f q

1
¢+{2lb(q

1
-e)f}/(h+a)3=0......................(21)

q
2
²-Pr(2qq

2
-fq

2
¢)+{(2lbfq

2
)/(h+a)3}-lb(q

1
-e)

[2q/(h+a)4+4f/(h+a)5]=0 ......................................(22)

subject to the relevant BCs:

f(0)=0, q(0)=m, q(¥)=1, q
1
(0)=1, q

1
(¥)=0, q

2
(0)=1,

q
2
(¥)=0................................................................( 2 3 )

After using finite differences, equations (20)-(22) take

the form:

q
1
=1/A

1
(B

1
q

i+1
+C

1
q

i-1
+D

1
)......................................(24)

q
1i
=1/A

2
(B

2
q

i+1
+C

2
q

i-1
+D

2
).....................................(25)

q
2i
=1/A

3
(B

3
q

i+1
+C

3
q

i-1
+D

3
).....................................(26)

where:

A
1
=4+2h2q

i
+2h2M, B

1
=2+hf

i
, C

1
=2-hf

i
, D

1
=2h2(M+1)-

{4h2bq
1
/(h+a)4}

A
2
=4-{(4h2lbf

i
)/(h+a)3}, B

2
=2+hPrf

i
, C

2
=2-hPrf

i
,

D
2
=-{(4h2lbef

i
)/(h+a)3}

A
3
=4+4h2Prq

i
+{4h2lbf

i
/(h+a)3}, B

3
=2+hPrf

i
, C

3
=2-

hPrf
i
, D

3
=-2h2lb(q

1
-e){2q

i
/(h+a)4+4f

i
/(h+a)5}

Where, h embodies the grid length. SOR method is a

well renowned scheme to attain the solutions of coupled

differential equations with very quick convergence.

Initially and almost all together Frankel (1950) and

Young (1950) entrenched the theory of SOR. In the

theory of SOR, it is worth pronouncing here that one

seeks the value of the relaxation parameter (extrapolation

factor) w that accelerates the iteration procedure for

which the SOR method converges. However, Kahan

(1958) resolved this problem by suggesting the value

of w in the interval (0,2).

For an appropriate choice of the relaxation parameter

0<w<2, the iterative process is initiated with some

initiatory guessed values for the unknowns q, q1 and

q2, where the kth iteration executes the following steps:

· By exploiting the SOR method, the succeeding

approximations q(k+1), q
1

(k+1) and
 
q

2

(k+1) are generated

respectively for the solution of equations (24)-(26)

subject to the last six conditions in (23).

· New guess f (k+1) for the solution of (24) is processed,

subject to the first condition given in equation (23),

by Simpson�s rule which is then utilized in equation

(24) to find q.

· For the convergence test q(k+1), q
1

(k+1), q
2

(k+1)and f (k+1)

are calculated along with q(k), q
1

(k), q
2

(k) and f (k).

· The iterative process is continued as far as:

||q(k+1)-q(k)||
L2

< TOL
iter

,    ||q
1

(k+1)-q
1

(k)||
L2

< TOL
iter

,

||q
2

(k+1)-q
2

(k)||
L2

< TOL
iter

,  ||f(k+1)-f(k)||
L2

< TOL
iter

,

For all the calculations performed here, the value of

TOL
iter

 is fixed as 10-11.

Results and Discussion

This section visualizes the numerical outcomes through

tables and graphs. The non linear equations (13)-(15)

are numerically solved with the help of BCs (16) and

(17) by employing SOR technique, as described in the

book by Hildebrand (1978), for a variety of estimation

values assigned to governing parameters. The step sizes

as well as the edges (for boundary layers) are balanced

such that the flow and temperature profiles show

asymptotic demeanor for various scope of physical

parameters. The values of three parameters are fixed

(i.e. a=1, l=0.01, e=2) in agreement with the values of
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parameters assumed by Neuringer (1966). The value

of stretching sheet parameter is taken as m=0.5 otherwise

identified and values of the remaining parameters are

specified in graphs. While observing the thermal

distribution, it is examined that the thermal boundary

layers become thin with the influence of Pr (Prandtl

number) and the temperature profile falls down in the

flow region with an icrease in the values of Pr. The

same trend in the thermal distribution was observed by

Bognar and Hriczo (2018) as shown in Fig. 2.

The wall heat transport parameter in non-dimensional

form is given as:

q¢(0)=q
1
¢(0)+x2q

2
¢(0) .............................................(26)

It is ostensible that the bio magnetic interaction parameter

b
 
substantially affects the flow field. On the other hand

for b=0 (hydrodynamic case), the flow problem becomes

decouple for the thermal energy problem. Thereby, as

suggested by Tzirtzilakis and Tanoud (2003), it is more

expedient and interesting to change the dimensionless

parameter q¢(0) given in equation (26) by the ratio:

q¢(0)= 
q

1
¢(0)

q
1
¢(0)|b=0

.....................................................(27)

This dimensionless ratio does not depend on x and

expresses heat transport rate on the surface (sheet).

The values of f²(0) and q¢(0) increase with M while

the impact of stretching sheet parameter m is to decline

the shear stress and increase the heat transport rate as

predicted in Table 1. It is obvious from Table 2 that the

shear stress and heat transportation rate increase by

increasing the values of dimensionless distance a
whereas ferrohydro dynamic parameter b acts in an

opposite way as compared to a in case of shear stress.

Accomplished results on the ferrofluid flow by Neuringer

(1966) designated that the decrease in the values of

f²(0) is slightly non-linear by increasing b. In our case,

ferrohydrodynamic parameter b acts in the same way

for f²(0) as mentioned by Neuringer (1966). Besides,

the heat transport rates increase with an increment in

l, Pr & e respectively, as envisioned in Table 3. It has

been come into noticed that the Nusselt numbers

(representing heat transportation rates) are the increasing

functions of Pr=mc
p
/k (Prandtl number), l=cm2/rk(T

c
-

T
w
) (viscous dissipation parameter) and e=T

c
/(T

c
-T

w
)

(dimensionless Curie temperature) whereas the shear

stress f²(0) is decreasing function of ferrohydro-dynamic

Table 1. Shear stress and heat transport rate for various

M and m

M f²(0) q¢(0) m f²(0) q¢(0)

0 0.1441 0.9682 0.0 2.0356 0.9684

2 0.4868 0.9764 0.2 1.5754 0.9748

4 0.7427 0.9807 0.4 1.0979 0.9798

6 0.9545 0.9835 0.6 0.6036 0.9837

8 1.1385 0.9855 0.8 0.0929 0.9868

Table 2. Shear stress and heat transport rate for various

a and b

a f²(0) q¢(0) b f²(0)

0.20 -28.0387 0.1232 4 0.3692

0.22 -20.3245 0.3878 8 -0.6133

0.24 -15.2478 0.5470 12 -1.6347

0.26 -11.6823 0.6510 16 -2.7081

0.28 -9.0854 0.7234 20 -3.8565

1

0.8

0.6

0.4

0.2

0
0 1 2 3 4

h

Pr = 4, 7, 10

Present result

Q

1

0.8

0.6

0.4

0.2

0
0 1 2 3 4

Q

h

Pr = 4, 7, 10

Bognar and Hriczo (2018)

Fig. 2. Temperature profiles for various Pr with

b=0.1 and m=0.
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parameter b. This study leads to the results that the

shear stresses and heat transportation rates may be

adjusted by appropriately selecting parametric values

at the surface (sheet) to attain the required consequences

in factual engineering applications of the present

problem.

Figures 3 and 4 display the velocity f ¢(h) for a variety

of estimation values of magnetic parameter M and

stretching of sheet parameter m respectively, while the

other parametric values are not changed (fixed). The

velocity profiles f ¢(h) show an increasing trend across

the boundary layer with M and m. One may conclude

that the effect of both the parameters (M and m) is to

enhance the flow velocities. Figures 5-7 demonstrate

the influence of dimensionless distance a on flow and

thermal velocities. As the values of a ascend, the velocity

profile rises while the temperature profiles fall down.

On the other hand, a reverse display can be seen for the

ferrohydro dynamic parameter b as compared to a i.e.

with an increment in b-values, the flow velocity

depreciates and the temperature profiles rise up as shown

in figures 8-10. These results indicate that the role of

increasing a is to accelerate the flow velocity, while

the ferrohydro dynamic parameter acts oppositely. From

Figs. 11 and 12, we note that with escalating values of

l, the temperature profile q
1
(h)  decreases whereas

q
2
(h) increases. Figures 13 and 14 demonstrate the

influence of Pr on the profiles q
1
(h) & q

2
(h). The

temperature profiles fall with the effect of Prandtl

number. Figures 15 and 16 predict that the temperature

profile q
1
(h) decrease while q

2
(h) rise up by enlarging

e. It can be notified here that the increasing b-values

cause the reduction in f¢(h) and also tend to diminish

the heat transportation rate at sheet. The coupling in

the momentum as well as in the thermal energy equations

is due to the presence of magnetic-dipole, which reduces

the flow along the extending surface and decreases the

heat transport rate as well. It is also notable that the

impositions of the parameters l, Pr & e have exceeding

influences on Nu
x
.

Table 3. Heat transport rates for several l, Pr and e

l q¢(0) Pr q¢(0) e q¢(0)

3 1.8947 1 0.9816 0 0.971306

6 3.3109 3 0.9838 5 1.066120

9 5.6902 5 0.9857 10 1.161176

12 10.2399 7 0.9872 15 1.256475

15 21.1413 10 0.9889 20 1.352016
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Fig. 3. Stream wise velocity f ¢(h) for b=2, Pr=7

and several M.
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Fig. 4. Stream wise velocity f ¢(h) for b=2, Pr=7,
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Fig. 5. Stream wise velocity f ¢(h) for b=0.5, M=2,

Pr=0.7 and various a.
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Fig. 9. Temperature profile q
1
(h) for Pr=7, M=5

and several b.
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Fig. 11. Temperature profile q
1
(h) for b=2,  Pr=7,

M=5 and several l.
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Fig. 8. Stream wise velocity f ¢(h) for Pr=7, M=5

and several b.
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Fig. 7. Temperature profile q
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(h) for b=0.5, Pr=0.7,

M=2 and several a.
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Fig. 10. Temperature profile q
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(h) for Pr=7, M=5

and several b.
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Fig. 6. Temperature profile q1(h) for b=0.5, M=2,

Pr=0.7 and various a.
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Fig. 12. Temperature profile q
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(h) for b=2, Pr=7,

M=5 and several l.
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Fig. 13. Temperature profile q
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and several Pr.

Fig. 14. Temperature profile q
2
(h) for b=2,  M=5

and several Pr.
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Fig. 15. Temperature profile q
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(h) for b=2,

Pr=0.7, m=1, M=2 and several e.

Fig. 16. Temperature profile q
2
(h) for b=2,

Pr=0.7, m=1, M=2 and several e.

Conclusion

This study reflects the impacts of magnetic parameter,

stretching of sheet parameter, dimensionless distance,

ferrohydrodynamic parameter, viscous dissipation

parameter, Prandtl number and dimensionless Curie

temperature on laminar, steady, two-dimensional and

incompressible flow of ferrofluid with heat transport

towards a stretching sheet. Non dimensional factors

were exploited to transmute the governing PDEs into

ordinary ones. The transmuted model subject to

analogous BCs was then solved numerically with the

help of SOR method along with finite difference

discretization. The main achieved results are as follows:
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· The curie temperature e slightly affects the thermal

distribution q
2
(h) while Viscous dissipation parameter

l marginally affects q
2
(h).

· Both the parameters, dimensionless distance a and

the ferrohydro dynamic parameter b, act in an opposite

way in case of velocity and thermal distribution.

· Enlarging values of the magnetic field parameter

lead to enhance f²(0) as well as q¢(0).

· The values of the heat transport rate q¢(0) increase

with ascending values of l, Pr & e respectively.
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