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Abstract. Through the lens of Tolman and Einstein energy momentum formulations, we conduct a
comprehensive analysis of the energy momentum localization in different space times (diagonal and non-
diagonal). We obtained that the two formulations (Tolman and Einstein) provide the same results for these
space times (diagonal and non-diagonal). However, we further obtained that the super-potentials of
Tolman and Einstein are different in general relativity for all diagonal and non-diagonal space times.
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Introduction

The structure of space time in special relativity is
characterized as flat. Within this context, the energy
and momentum associated with both matter and non-
gravitational field sources can be elegantly encapsula-
ted using a mathematical construct called the energy
momentum tensor A. This tensor provides a concise
and comprehensive description of how energy and
momentum are distributed and interact within the
fabric of space time. Energy momentum complexes
are a fascinating area of research in general relativity.
That was Einstein, who first of all gave mathematical
expression for energy and momentum distribution and
tried to show that how energy and momentum are
distributed locally. Although Einstein has been
formulating the theory of general relativity for over a
century, the issue of energy and momentum
distribution remains a challenging problem in general
relativity that is still unresolved. After Einstein, a
number of scientist have tried to resolve the problem
of energy and momentum distribution and gave their
own definitions. Including definition of Tolman (Ali
et al., 2022), Weinberg formulation (Radinschi et al.,
2020), Bergmann Thomson (Aygun and Yilmaz,
2008), Papapetrou (Sharif, 2004) and Landau-lifshitz
(Sharif and Nazir, 2008). One major drawback of these
formulations is their reliance on specific coordinate
systems. Meaningful results are attainable exclusively
by employing cartesian coordinate in calculations
(Sharif, 2004). Physicists such as Penrose (1982),
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Moller (1961), Komar (1959), Moller (1958)
developed coordinate independent definitions of
energy momentum formulations as a response to the
limitations imposed by coordinate dependence.

Although the Komar formulation does not rely on
Cartesian coordinates, it cannot be applied to non-
static space times. The contention made by Moller was
that his formulation provides an equivalent total
energy momentum values as Einstein’s energy
momentum formulation for a closed system. Moller’s
energy momentum expression, however, faced
criticism from various sources (Kovacs, 1985;
Penrose, 1982; Moller, 1961; Komar, 1959). The
conceptual significance of quasi-local masses reported
by Penrose (1982). The deficiencies of these quasi-
local masses have been the subject of discussion of
Virbhadra (1999), Bernstein and Tod (1994) and
Bergqvist (1992) as they do not yield consistent output
for the kerr metrics and Reissner-Nordstrom.
Additionally, the expression proposed by penrose fail
to adequately address the kerr metric. Each of these
energy momentum prescriptions possesses its own
limitations. Thus, these notions of energy momentum
prescriptions received substantial criticism in
response.

The result of all these prescriptions (coordinate
dependent and independent) are sometimes coincide
and sometimes disagree for the same space time in
general relativity (GR). The credit for revitalizing
interest in this approach goes to Virbhadra (1999),
Virbhadra (1990a and b). Several investiga-tions have
been conducted by different authors to evaluate the
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energy momentum distributions in various space times
(Sharif, 2003 and 2002; Yang and Radinschi, 2002;
Xulu, 2000a and b; Virbhadra’s, 1999) recent paper
examined the equivalence of energy momentum
prescriptions proposed by Papapetrou, Landau-
lifshitz, Weinberg and Einstein for the energy
momentum  distribution in  general non-static
spherically symmetric metric. A remarkable discovery
was made when, in contrast to previous findings in
both asymptotically non-flat and asymptotically flat
space times, it was discovered that these formulations
show disagreement. Rosen and Virbhadra (1993) as
well as Chamarro and Virbhadra (1995) computed the
energy momentum of various space times. (Virbhadra,
1999; Virbhadra, 1990a and b) and utilized Einstein’s,
Weinberg, Papapetrou’s and Landau-lifshitz energy
momentum formulations to analyze the energy
momentum distribution in non-static spherically
symmetric space times of the kerr-schild class. His
research indicated that all of these approaches yielded
comparable energy momentum distributions when
compared to the penrose energy- momentum complex.
The research conducted by Banerjee and Sen (1997)
demonstrated that the overall energy within a Bianchi
type-I unverse is uniformly zero throughout. But there
are documented cases (Sharif and Fatima 2005a and b;
Sharif, 2003; Sharif, 2002) that challenge this
assertion.

It has been suggested by certain authors that the
Teleparallel theory of gravity (TPT) may provide an
alternate approach to solving the issue of energy
momentum distribution. Additionally their
investigations demonstrate that energy momentum
localization is attainable within the framework of TPT.
On certain occasion there is agreement between the
predictions of both GR and the TPT. By employing the
TPT version of Lindau-lifshitz’s and Einsteis’s energy
momentum prescriptions, Vargas (2004) proved that
the overall energy of the closed Friedmann-Robertson-
Walker universe is zero. The output derived by Vargas
concur with the results reported by Rosen (1994),
demonstrating consistency between their respective
outcomes. The identification of this phenomenon
provided an opportunity for numerous authors to
examine the energy momentum characteristics of
different space times by employing the teleparallel
version of various prescriptions. while some space
times yielded consistent results across different
prescriptions, discrepancies emerged in other cases.
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The present study investigates different space times
geometries (diagonal and non-diagonal) to analyzing
its energy momentum distribution through the Tolman
and Einstein expressions in GR. The layout of the
paper is as follows: section 2 of the paper outlines the
formulations of Tolman and Einstein in GR, section 3
contain the material methods of this research and
section 4 contains the findings of the energy
momentum distribution in different space times
(diagonal and non-diagonal) within the GR, using the
two formulations, section 5 provided results and
discussion of this research. Finally, section 6
presented a brief conclusion to this research.

Tolman and Einstein energy momentum tensors.
This section aims to summarize the Tolman and
Einstein formulations utilized in GR for calculating
energy momentum tensors.

Tolman energy momentum tensor. In GR, the
Tolman definition of energy momentum distribution is
represented by the following formula (Ali et al.,
2022).

u_ 2 _uo
Tqg = ; QG *++ e (1(':1)
where
2
™ = gverh = ;g""“r,’jz .................................... (1b)

o =L (st givy -

a

2g*<V% )non-symmetric .(1c)

Einstein energy momentum tensor. In GR, the
Einstein definition of energy momentum distribution
is represented by the following formula (Ali et al.,
2022).

2
X =2 XE s (2a)
2
= gv‘x)(g' = ;gva){g"-g] ................................. (2b)
where:

1
X(EW] = ﬁgaﬁ

and g = det(gm,)

[wvl(By] ; ;
Ay Anti-symmetric ........... (2¢)

where:
Kk is Einstein constant

............................................................................... 3)
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where:

AlrIleBl s represent Landau-lifshitz presccription.
And l"]lk is used for second kind of christoffel symbol
which is equal to the metric

1
Fi’; = Egmx(gia'j+ gja,i - gij,oc) .......................... (5)

Material and Methods

We need to find the energy momentum tensors and
super potentials for both Tolman and Einstein
prescriptions for any metric in space times by using
Mathematica software to show that Einstein and
Tolman prescriptions will give same energy
momentum tensors and give different super potentials.
We will first show generally that Tolman and
Einstein’s defined energy momentum tensors are the
same regardless of the metric. Then we will show that
the super potentials defined by Tolman and Einstein
are different for any metric. We will make use of
Mathematica software to obtain our results.

Spacetime models in focus. We will examine twelve
distinct space times and demonstrate that they yield
identical results for Tolman and Einstein energy
momentum tensors in all instances.

Example 1. We will examine the Bell-Szekeres Metric
(Sharif and Nazir, 2008) expressed in cartesian
coordinates.

ds? =23dt2 —Co

s2[a82eM2 1 p
dx? — Cos?[A U:Z) 0 (t:Z) +B (Z_Zt)) 0 (t;Z)]dyz -

(t-2) 0 (t—Z)]
2 2

Plugging the metric coefficients in to equation (1c)
and equation (2c) yields the following Tolman and
Einstein super-potentials components.

3 =L (—2BSin[B(t — 96210 =2 +
24Sin[A(t +2)0 5210 2 — Brsin[B(t - 2)

0 2pr 2 4 Bsz[B(t —2)p 2y 2 4
AtSin[A(t + 2)6 (HZ)]H’ (Hz)] + AzSin[A(t + z)

9 (t-;—z)]e, (t-;—z))

00 _ 0
213° =T

9l = —1§? = = (~2BSin[A(t + 2)0 20 2 -

245in[B(t — 2)0 =219 22— Brsin[A(t +

2)052)0' 2 + Bzsin[A(t + 2)0 21" 2 -
AtSin[B(t - 2)0 210" 2 — AzSin[B(t —
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(t=2)1 5, (t+2)
z)6 - 16 — )

193 = L (2BSin[B(t — )0 =219 =2 4
16 2 2
24Sin[A(t + 2)0 B0 2D 4 Brsin[B(t —
2 2

2)0=216' =2 - BzSin[B(t - )6 “2)0' =2 +

AtSin[A(t + 2)0 210" 2 + AzSin[A(t +

)9 (t+z)] (t-;—z))
a0t = =282 = = (Sin[B(t - )6 2] - Sin[A(t +
2022 (280 2 — 2402 +

Bto' =2 — 20" 2 — e’ 22 — Az’ D)

A8 =~ = (<2BSin{Bc - )0 (t;z)] 0 (t;) +
2ASin[A(t + 2)0 —(tzz)]e ‘(CZZ) -

BSin[B(t — 2)0 210" 2 + Bzsin[B(¢ -
Z)B (t_z)]el (t’—Z) +
2 2

AtSin[A(t + 2)0 E210" 2 + AzSin[A(t +
(t+2); 0 (E42)
2)0 =10 S5 7)

By substituting these values into equation (1a) and
equation (2a), we derived the corresponding
components of the Tolman and Einstein energy
momentum tensors.

X8 =18 = = (4B>Cos[B(t — )0 =21 (022 +
4A%Cos[A(t + )0 210 ©2)? + 4BSin[B(t —
2)0 210" =2 1 4B2(t — 2)Cos[B(t —
2)0 219 = Z)e'“ 2 1 B2t*Cos[B(t -

2
7)9 L2 (9'“ )2 — 2B%tzCos[B(t -

2
20202 Z))Z + B2z2Cos[B(t —
7)o &2 (9'@)2 + 4ASin[A(t +
2)0 (tzz) 0 + 4A2(t + z)Cos[A(t +

]
— ]
— ]
=
— ]
)g(t-;—z)]e(f+z)6,(t+l) + A%t2Cos[A(t +
— ]
— ]
— ]
— ]

, (t+z)

(t+2)

2)0 —=1(6’ —2)2 + 2A%tzCos[A(t +

2)0 “;Z) ' (”Z))Z + A%2%Cos[A(t +

z)0 “:Z) CH “”))2 + BtSin[B(t —

)H(tzz) g =2 Z) — BzSin[B(t —

(t+z)
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2)6 —“‘Z)]e” —“‘Z) + AtSin[A(t + 2)0 —“;Z)]e” —“;Z) n

AzSin[A(t + 2)9 e )

$0 =10 = i(—4BzCos[B(t -
2)0 “?](9 G- €22 1 442Cos[A(t +
26 €210 (t”)) — BSin[B(t —
20 (tZZ)]Hr (&= Z)] 4B2%(t — z)Cos[B(t —
)g(tzz)]e(f Z)gr(“— 2 _ B22Cos[B(t —
20 (t22>](gf (t= Z))Z + 2B%tzCos[B(t —
202102y - B22Costae -
20 5216 T + 4ASinfA(t +
—-]
]
—1
—-]
—-]
—1

20 (tzz) g &2 (f+Z) + 4A%(t + z)Cos[A(t +

2)0 “;Z) 9“”)9'““)+Azt Cos[A(t +

204210 52292 4 s2eacostae +
(t+2)
2

2)6 (9'“”))2 A222Cos[A(t +

2)6 (9'“”)) — BtSin[B(t —

)H(tzz) g =2 Z) + BzSin[B(t —

2L Z)]e” o Z) + AtSin[A(t + 2)0 “”)]6” &) |

2
AzSin[A(t + z)e ED)9n L2) 0

2 i

(t+2)

Example 2. The special class of ferrari-lbanez
degenerate space time (Sharif and Azam, 2007) is
given by

2 = nt)? (dt? — dz?) — 4=8smt)
ds® = (1 + dsint)*(dt* — dz*) (1 85imD)
cos?z(1 + &sint)?dy?

where:
& is an arbitrary constant.

Plugging the metric coefficients in to equation (1c)
and equation (2c) yields the following Tolman and
Einstein super-potentials components.

0 w/—1+6sintcos’z 01
T3 - - 1] Tl
8vcosz
/coszv—1+6sint(-7+58sint)sin’t 703 —
8(—1+8sin2t) 3
w/coszV—1+8sint(—1+38sint)8sin’t g
8(—1+8sin2t) e
(3wcoszvV—1+8sintSsin’t) 02 _ 502 _
4+adsint » X2 T Ll =
L\/cosz6sm t 03 _ 703 —
4V—1+6sint wWoiresme 20 T o T
w/=1+8sint(1+8sint)cos’z 03 _
4+/cosz » X3
&2sintiy/coszsin’t)

- m(2+265int] .............................................
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By substituting these values into equation (1a) and
equation (2a), we derived the corresponding
components of the Tolman and Einstein energy
momentum tensors.

0 _ —
Xo =To =
w/=1+8sint (1+8sint)((cos'z)2—2cosz(cos''z)) 0
3 X3 =13 =
4K(cosz)2
28sintcos’]z8sin’ t
Ky coszV—1+8sint(4+48sint))
X =12 =0fori =12 oo, (11)

Example 3. The szekers class Il space time (Aygun et
al., 2006) is given by

ds? = —dt? + Q%dx? + R?(dy? + h?dz?)........ (12)
here h=h(y), R=R(t) and Q=(x,y,z,t)

Plugging the metric coefficients in to equation (1c)
and equation (2c) yields the following Tolman and
Einstein super-potentials components.

00 = ZhR?Q, 73° = T R2(Q + hQ,),78° =
ThR2Q,101 = —ZhR(=2QR' + RQ,) 9% =1{° =
ThR2Q 2! X8 =18 =S (Qh' +
hQ)x3? = ShR(QR' +RQy), x$* =18° =
22283 = ZHR(QR' + RQe) oo (13)

= hQRR/,

By substituting these values into equation (1a) and
equation (2a), we derived the corresponding
components of the Tolman and Einstein energy
momentum tensors.

1 n QZZ !
=18 =2(Qn" + 21210, + hQ,,) X0 =
= ~(2hRR'Q)xY =73 =+ (RK'(QR' + RQ.) +

h(R'Qy + RQy) ) x§ =18 == (hR(R'Q, + RQ,.))

Example 4. The general form of the diagonal space
time ( Korunur et al., 2006) is

ds? = —A2dt? + B2dx? + C2dy? + F2dz?.......(15)

The functions A, B, C and F depend on the variables
t, X,y and z.

Plugging the metric coefficients in to equation (1c)
and equation (2c) yields the following Tolman and
Einstein super-potentials components.
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BCF , Ay , By  Cyx . F BCF , A
00 = (—ZEp Xy =T (— 2y
44 A B € F 44 A
By, C, F BCF, A, By C
_y+_y+_y) g(]:_(__z+_z+_z+
B¢ Flo 44 A B Co
F, BCF ,A¢ Bt t | Fr BCF A¢
D = G-+ S D =—(F
F 44 YA B C F 44 “A
B G Fey' o3 BCF ey Br G Fey o1 _
B C F 3 44 %4 B ¢ F’N0
01 _ A(FCx+CFy) 01 _ B(FCt+CFy) 02 _ 02 _
To == 5 X =77 X =T =
AFBy+BFy) 02 _ C(FBi+BFt) .03 _ 03 _
2 2 = .
A(CB4+BC. F(CB¢+BC,
ACB*BCr) 03 = FCBABC) | e (16)
2F 24

By substituting these values into equation (1a) and
equation (2a), we derived the corresponding
components of the Tolman and Einstein energy
momentum tensors.

A,(CBz+BC;)  A(CBz+BCy)Fy

o_,0_1
Xo =T = x( F F2 +
A(2B;Cz+CBy;+BCyy I Ay(FBy+BFy) _ ACy(FBy+BFy)
c c?
A(2ByFy+FByy+BFyy) n Ax(FCx+CFy)  ABy(FCy+CFy) "

¢ c ) B B2
A(2CxFx+FCxx+CF, 1
AT CR0) 4 = ) = 5 (AB(FC, +

CF;) + B(—CA,F; + F(—A,C; + AC;,) + A(F,C: +
CoFe + CFo)))XS = 18 = — (AC,(FB, + BF,) +
C(—BA,F, + F(—A,B, + AB,,) + A(F,B, + B,F, +
BFy )X =19 = — (—FA,(CB, + BC,) +
AF,(CB, + BC,) + AF(C,B; + B,C, + CB,, +
o0 ) T (17)

Example 5. Here we consider the general Bianchi type
diagonal space time (Aygun et al., 2006)

ds? = —dt? + A*dx? + B%e?***dy? + F?e?*dz?)

The functions A, B and F depend on the variable t only
and a, 8 are constants.

Plugging the metric coefficients in to equation (1c)
and equation (2c) yields the following Tolman and
Einstein super-potentials components.

+
Lo1 _leaxzﬁx
g

(AFB' + B(—FA' + AF"))

1 ax+px
03 _
T3 —Ze 2

(AFB' + B(FA' — AF"))

1 ax+px
)(flzie z A(FB' + BF"),

1 ax+px
X§2=§e z B(FA' + AF")

1 ax+px
e 2 F(BA +AB") i, (19)
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By substituting these values into equation (1a) and
(2a), we derived the corresponding components of the
Tolman and Einstein energy momentum tensors.

X0 =10 = 0fori=0,1,2,3 c.oovverrreeerees (20)

Example 6. By putting « = 8 = 0 in eq(18) then the
diagonal space time describe the well-known Bianchi
type | (Aygun et al., 2006)

ds? = —dt? + A%dx? + B%dy? + F?dz®......... (21)

The functions A, B and F depend on the variable t
only.

Plugging the metric coefficients in to equation (1c)
and equation (2c) yields the following Tolman and
Einstein super-potentials components.

1

91 = 2 (AFB' + B(—FA' + AF")),
02 1 ! I !

9% = Z(—AFB +B(FA' + AF"))
03 1 I !

93 = Z(AFB + B(FA' — AF")),
01 1 ! [

X =§A(FB + BF")

02 1
18 =5 B(FA' + AF")

1

X33 = ZF(BA 4 AB) oo (22)

By substituting these values into equation (1a) and
equation (2a), we derived the corresponding
components of the Tolman and Einstein energy
momentum tensors.

X0 =1) =0f0ri=0,1,2,3 oo (23)

Example 7. By putting @« = —1,8 = 0 in equation
(18) then the diagonal space time describe the well-
known Bianchi type 11l (Aygun et al., 2006)

ds? = —dt? + A?dx? + B%e**dy? + F?dz*..... (24)

The functions A, B and F depend on the variable t only
and « is a constant.

Plugging the metric coefficients in to equation (1c)
and equation (2c) yields the following Tolman and
Einstein super-potentials components.
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00 = —2eZ ABF, 1" =1e% (AFB' +B(—FA' +
AF))T$? =1 (~AFB' + B(FA' + AF")), §° =
Ze (AFB' + B(FA' — AF'())x8* = 1§ =

_TxBF 1 =X , ,
— 22, @ =-ez A(FB' +BF')
X3? =-e2B(FA' + AF"), x§*=Ze2F(BA +
FY: L T (25)

By substituting these values into equation (1a) and
equation (2a), we derived the corresponding
components of the Tolman and Einstein energy
momentum tensors.

—x -x

0_ 0 _ €Z2BF 0_ .0_ _€ZAFB'+BF)
Xo=To = N =tu=—"" —
X0 =10 =0,fori=2,3 oo (26)

Example 8. By putting « = § = —1 in equation (18)
then the diagonal space time describe the well-known
Bianchi type V (Aygun et al., 2006).

ds? = —dt? + A%dx? + B%?e ™ ?*dy? + F?e ?*dz?

The functions A, B and F depend on the variable t
only.

Plugging the metric coefficients in to equation (1c)
and equation (2c) yields the following Tolman and
Einstein super-potentials components.

0 = —%e"‘ABF‘, ™ = ie‘x(AFB’ +
B(—FA'+ AF))T9? = e ™*(—AFB' + B(FA' +
AF"), 19 =1e *(AFB' +B(FA - AF)xt =
~eT*A(FB' + BF"), x%*=-e *B(FA' +

AF)X33 =2 F(BA' + AB) oo (28)

By substituting these values into equation (1a) and
equation (2a), we derived the corresponding
components of the Tolman and Einstein energy
momentum tensors.

e *BF 0 0

0 0
=Tn = =T, = —
Xo 0 YRS 1 o

70 =0, T0ri=2,3 e (29)
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Example 9. By putting @ = —f = —1 in equation (18)
then the diagonal space time describe the well-known
Bianchi type VI, (Aygun et al., 2006).

ds? = —dt? + A%dx? + B%e ?*dy? + F?e?**d z*

The functions A, B and F depend on the variable t
only.

Plugging the metric coefficients in to equation (1c)
and equation (2c) yields the following Tolman and
Einstein super-potentials components.

01 = Z(AFB' + B(—FA' + AF'),79? =

i(—AFB’ +B(FA' + AF"))T® = %(AFB’ +

B(FA' — AF")), x?' = ZA(FB' + BF')x$* =

1

%B(FA’ + AF'), X = ZF(BA' + AB') oo (31)

By substituting these values into equation (1a) and
equation (2a), we derived the corresponding
components of the Tolman and Einstein energy
momentum tensors.

X =1)=0,fori=0,1,23 s (32)

Example 10. Here we consider the non static plane
symmetric diagonal space time ( Amir et al., 2012).

ds? = eZV(t,x)dtZ _ eZu(t,x)de _ e/l(t,x)(dyz +
T FO (33)

Plugging the metric coefficients in to equation (1c)
and equation (2c) yields the following Tolman and
Einstein super-potentials components.

01 _ .01 _ _1
Xoo =To = —3€
1

1 1.
_Eeh—zﬂ ZV(ZAx Tty — ‘Vx)Tfl =

1 1
A_EM+EV/1.X T?O —

1 At
—5€ HQ2A — etV Rt =10 =
1

2" (e +vxtt =
03 _ 1 il
Xzw=—jee e (Ap F Ue) oo (34)

1 a+ip- 1 a+ip-2
_ge/qu _Ee/l+2u ZV)lt ng —

By substituting these values into equation (1a) and
equation (2a), we derived the corresponding
components of the Tolman and Einstein energy
momentum tensors.
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A-Lusd
0o_,0_ _¢ 272V (223 +Ax (“xHVa) +2Axx) 0 _
Xo =T = — 7 X1 =

A+£,u.—lv
0 _ e 27 27 AxAttuxAe—VaAe+24ex) 0 _ 0 _
h=- 2K i ==
0fOr i = 2,3 it (35)

Example 11. The cartesian form of weyl metric
(Sharif and Fatima, 2005) is given by

ds? = e2%dt2 — 7 (vax + ydy)? —
= e ydy)

e~

2y
— (xdy — ydx)? —e?V=P)dz2 . (36)

The functions ¥ and y depend on the variables p and
Z

Plugging the metric coefficients in to equation (1c)
and equation (2c) yields the following Tolman and
Einstein super-potentials componen

01 _ 01 _
Xo =T =
1
e?’x 02 _
2\/—xy2+x2y2+eZV(—xy2+x2y2)+ey(x4+2xy2+y4)XO
3% =
iy
ez’y 03 _
Xo =

2\/—xy2+x2y2+e2¥ (—xyZ+x2y2)+e¥ (x*+2xy2+y%)
03 _
Ty =
1
4[-xy2+x2y2+e2¥ (—xy2+x2y2)+e¥ (x +2xy2+y*)p?

-1
(—eTV (e7(x* —2(—1+ e¥)xy? + 2e"x%y? +
vy, —2(—xy? +  x%y? + ¥ (—xy? + x%y?) +
e? (x* + 2xy? + y‘*))wz)) 0 =

L sy
_ ez’ x(2e¥x%+y%+e?Vy?) 00
4[-xy2+x2y2+e2¥ (—xy2+x2y2)+e¥ (x +2xy2+y*)p? 2

e%y_4lpy((1+ezy)x2+267y2)
B 4y/=xy2+x2y2+e2Y (—xy2+x2y2)+e¥ (x*+2xy2 +y*)p?
1
- 8V —xy2+x2y2+e2Y (—xy2+x2y2)+e¥ (x*+2xy2+y*)p?

00 _
3 =

1
(e2V ¥ ((—xy2 + x2y% — 3e? (xy? — x%y?) +
2e¥ (x* + 2xy% + yY))y, — 4(—xy? + x?y? +
e? (—xy? + x%y?) + eV (x* + 2xy? + y4))¢z> (37)
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By substituting these values into equation (1a) and
equation (2a), we derived the corresponding
components of the Tolman and Einstein energy
momentum tensors.

1

0 _ 0 _
Xo =To = 3
4(—xy2+x2y2+e2¥ (—xy2+x2y2)+e¥ (x*+2xy2+y*))2k

(e%ly(éleyyz((l + e?)x? + 2e’y?) +
4e¥x?(2e¥x? + y% + e?Yy?) — 8e¥ (—xy? +

x2y? +e? (—xy? + x%y?) + eV (x* + 2xy? +
y*)) + pizey(x4 —2(—1+e")xy? +2e"x%y* +
vy (e¥ (x* — 2(—1 + eV)xy? + 2e¥x%y* +
Y, = 2(—xy® + x*y* + e (—xy® + xy*) +
e¥(x* + 2xy* + y" )y, + piz(—xy2 + x2y? +

e (—xy? + x%y*) + eV (x* + 2xy* +
YNy (e’ (x* — 2(—1 + e")xy? + 2e¥x%y? +
Yz = 2(—xy? + x%y? + e (—xy® + x%y?) +
e’ (x* + 2xy* + y)y, — piZZ(—xy2 + x%y* +

e (—xy? + x%y*) + eV (x* + 2xy* +

YN (x* + (2 — 4eM)xy? + 4e"x’y? +yM)y; -
2e¥(x* —2(—1+ eV)xy? + 2e¥x%y* + y )y, ¥, +
e (x* = 2(=1 4 eM)xy* + 2e¥x2y? + y*)y,, —
2(—xy? + xy* + ¥ (—xy* + x%y*) + eV (x* +

2xy? + Y)Y ) =10 =0, fori=123..(38)

Example 12. we will consider Homogeneous Godel-
type Metric (Sharif, 2004) in Cartesian coordinates.

ds? = dt? — = (xdx + ydy)? + — (H — D?)

2

2
(xdy — ydx)* — dz* + S Hdt(xdy — ydx) .......(39)

where H and D are the functions of r only.

Plugging the metric coefficients in to equation (1c)
and equation (2c) yields the following Tolman and
Einstein super-potentials components.



Einsten Energy of Momentum Complexes 51

(x4—y4)H(r)(r2 —D2(r)+H? (r))(—xyr2 +xyD? (r))

A~y ARy RIDA (P D) (4 2y 24y )2~ (24 HE (1) (xy P —x 2y D)2

90 =

100 = [~((J =27 ¥ FyP)DF + D2 + 2xy? + YD £ (7 F B G — 7D ((—a2y* +
x3y")D8 + DO (x(—2x3y? + 3x*y? + 2xy* + y®)r? — y(xy® — 6x2y3 + 5x3y3)H?) + D*(2x(x® — xy* +
2x%(xy? + y")r* + (8x*y? — 10x°y? + 3xy* — 10x?y* + 3x3y* — 2xy®)r2H? + 3xy?(xy? —
x2y2)HY) + 12 + HH) (xy?(—xy? + x2y*)r® + (xy* — 3x%y? + 3x3y* + x3(4xy? — y*) + x(—xy* +
yOOr*H? + (=7x5y? 4+ 3x°y? + xy?(2xy? + y*) + x3(4xy? + y*) — x(Bxy* + y®))r2H*) —
D?(—x(—2x3y? + 3x*y? 4+ 2xy* + yO)r® + (2x7 — 7x°y? — 6x%y* + 3x3y* + 4x3(Bxy? + y*H) +
xy?(Bxy? + y))r*H? + (10x*y? — 14x%y? + 6xy* + 3x°y? — 14x%y* + 6x3y* + 2xy° — 3xy®)r?H* +

y(3xy3—10x2y3+7x3y3)H6))) ]
(4r*((xy?—x2y2)D*-D? ((x* +2xy2+y*)r2) +12+H2)((xy2 -x2y2)r?)?)

90 = [—((\/(—xy2 + x2y2)D* 4 D? ((x4 +2xy? + yHr2 + (r2 + H2)((xy? — xzyz)rz)) ((—x3y +
x*y3)D8 + DO (y(x® — 2xy* + x2(2xy? + 3y")r? — x(xy® — 6x2y3 + 5x3y3)H?) + D*(2y(—x3y? +
2x*y? + 2xy* + yO)r* + (x%y + 3x%y3 — 3x%y — 10x3y3 + 3x*y® + 8xy® — 10x2y>)r2H? +

3x2y(xy? — x2yH)H*) + (r? + H)(x?y(—xy? + x2y?)r® + (x2y3 + xy + 2x*y3 + 4xy° — x?y(xy? +
3y")Or*H? + (x*y? + 4xy® + x(2xy® — 7xy®) + x2(—3xy® + 3y°))r2H* + D?(y(x® — 2xy* +
x2(2xy? + 3y")re — (xy + 3x%y% — 6x3y3 + 7x*y® + 12xy5 — 7x2y5 + 2y")r*H? + (x°y — 6x*y> —

100" 4 x(-ay’ T I )y
(ar*((xy“—x2y?)D*=D*((x*+2xy*+y*)re+(r2+H*)((xy“—x*y*)r<+)))

x(-2D%2+H?)

4[(~xy2+x2y2)D*+DZ ((x*+2xy2+y)r2—(r2+H2) ((xy2—x2y2)r?)

0t = [—((Hy (—xy? + x2y?)D* + D?((x* + 2xy? + y)r2 — (r2 + H2) ((xy? — x2y?)r2) ((—2xy* +
4x?y3 — 2x3y3)D® + D*(—(—x5y — 6xy® + 8x%y% + x3y3 + 2xy°)r? + 3(2xy3 — 5x2y3 + 3x3y3)H?) +
(r?2+ HH(QRxy® + x5y —  x3y3)r* + (4xy® — 7x%y3 + 3x3y*)r2H?) + D?((—2x5y — 6xy° +
—12xy3+x%y+22x2y3-7x3y3 +2xy®)r2H%-3(2xy3 —6x2y3 +4x3y3)H?)))
(4-r2((xy2—x2y2)D4—D2((x4+2xy2+y4)r2+r2+H2)((xy2—x2y2)r2))2)>

4x2y3)rt (

9" = [—((Hy/(—xy? + x2y?)D* + D?((x* + 2xy? + yH)r? — (r2 + H2)((xy? — x2y>)r2) (D* (y(x*y +
4xy3 = 3x2y3)r? + (x3y? — x*yHH?) + (r? + H)(y(x*y + 4xy> — 3x2y3)r* + (—x*y? + 4xy* —
7xiy* + x2(xy? + 3y))r?H?) — D?(y(x*y + 3x*y + 8xy3 — 2x%y3 + 2y°)r* + (—x*y? + 8xy* —

2x2(xy2+y4))r2H2+x2(2xy2—2x2y2)H4))) ]
(4r2((xy?—x2y2)D*=D?((x* +2xy2+y*)r 2+ (r2+H2) (xy2-x2y?)r2))2))

9x2y4

9% = [(H\/(—xy2 + x2y2)D* + D?((x* + 2xy? + y*)r2) — (r2 + H2)((xy? — x2y?)r?)

(D*(x(4x%y? — 2x3y% — x3y2 + xyH1r? + y2(xy? — x2y?)H?) — (r? + H?)(x(—4x%y? + 3x3y% —
xyrt 4+ (Txty? — 3xty? — xy* + x3(—4xy? + y*)r?H?) — D?(x(2x° + 8x%y? — 2x3y? + xy* +

axty? +2xty? 4 2xyt—x2yHr2H2 +y2 (2xy% -2x2y?)HY))) ]
(4r2((xy?-x2y2)D*=D2 ((x*+2xy2+y")r2)+(r2+H2)((xy2-x2y?)r2))2)

3xyH)r* + (8x3y? —
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9% = [(Hy (—xy? + x2y?)D* + D((x* + 2xy? + yH)r2) — (r2 + H)((xy? — x?y)r?) ((—2xy* +
4x%y3 + x3y3 — 3x3y3)D® + D*((6xy3 — 2x°y — 8x%y3 —  x3y3 + 2xy® — 3xy°)r? + 3(2xy3 —
5x2y3 + 3x3y3)H?) + (r2 + H)((2xy® —  x3y3 + xy®)r* + (4xy® — 7x%y3 + 3x3y*)r?H?) +
D?((—6xy® + 4x%y3 —  xyS)r* + (—12xy® + 2x°y + 22x2y3 — 7x3y3 — 3xy® + 4xy®)r?H? —

6x2y3 +4x3y3)H4')))

3(2xy3 —

]03=

(x*=y"H(@r2=D?+H?)(—xyr?+xyD?)

(4r2((xy2—x2y2)D*—D2((x*+2xy 2 +y*)r2)+ (12 +H2) (xy2-x2y?)r2))2)

T3

01 _
0

3

4((—xy?+x2y)D*+D2 ((x*+2xy 2 +y)r2)—(r2+H?) ((xy?-x2y2)r?))2
x(—-2D?+H?)

4/(~xy2+x2y2)D*+DZ (x*+2xy 2 +y*)r2—(r2+H2) (xy2—x2y2)r

02 _

2){{]1 = _XZ -

H(r)(xyr?+xyD?-xyH?)
4r2,[(~xy2+x2y2)D*+D2(x* +2xy2 +yH)r2—(r2+H2) (xy2 —x2y2)r

01 _
= X2 =
H(yzrz—x2D2+x2H2)
4r2,[(~xy2+x2y2)D*+D2(x*+2xy2 +yH)r2—(r2+H2) (xy2 —x2y2)r
y(-2D2+H?)

4/ (~xy2+x2y2)D*+DZ (x*+2xy 2 +y*)r2—(r2+H2) (xy2—x2y2)r

02 _
X0 =

02 _
X1 =

H(x2r2—y2Dp21y2H2)
412/(~xy2+x2y2)D*+D2 (x +2xy2 +y*)r2—(r2+H2) (xy2—x2y2)r2

By substituting these values into equation (1a) and equation (2a), we derived the corresponding components of
the Tolman and Einstein energy momentum tensors.

((xy(2D?-H?)(r2=D?+H?)(xyr?-xyD?))

0 _ 0 _ __
Xo =To =
(K\/(—xyz+x2y2)D4+D2((x4+2xy2+y4)r2)—(r2+H2)((xy2—x2y2)r2)

1 0 _
[«xyZ—nyZ)D‘*—DZ((x4+2xy2+y4>r2>+(r2+H2>((xy2—x2y2)r2)))>] =

0 = [(H(y(—4xy? + 2x%y?)D® + D*((2x*y + x*y + 8xy>® — x2y3 + 2y5)r? — y(—11xy? +
7x%y?)H?) — D2((2x*y + 4xy® — 4x%y®)r* + (3x*y + 14xy® — 5x%y% + 2y°)r?H% + y(10xy? —

(r2+H2) ey (63 —xy DT+ (3xy3 22y 3)r2H 24y Bxy? =322y Hr ) 0_

1x2 =

8x2y)HY) +

(2r2e((-ey? +x2y2 DA+ D2 (x4 2y 4y )r)— (2 +H2) ey -y )2)
79 = [(H(x(—4xy? + 2x2y?)D® + D*((2x° + 8x2y? — x3y? + 3xy*)r? — x(—11xy? + 7x2y?)H?) —
D?((4x2y? — 4x3y? + 2xyM)r* + (2x° + 14x2y? — 5x3y? + 3xy")r?H? + x(10xy? — 8x2y?)H*) —

(r?+H?) ey (Py -yt +(=3x2y?+x3y?)r2 2 —x(3xy?-3x2y*)H")))

(27’2pc\/(—xyz+xzyz)D4+D2((x‘*+2xy2 +y9r2)—(r2+H2)((xy2-x2y2)r2)
1

[((xyz—xzyz)D4—D2((x4+2xy2+y4)r2)+(r2+H2)((xy2—xzyz)rz)))]
XS = T = 0 ittt (41)

Results and Discussion
The energy with Einstein’s pseudo energy momentum

extension of the general theory of relativity
(Giacomini et al., 2017). Like Galileon gravity which

tensor agrees with a total energy of massive particles
with gravitational interactions through the Newtonian
potential and this is conserved (Aoki et al., 2023).
They finally discuss an implication from a fact that
there exist two conserved quantities, energy and
gravitational charge, in general relativity. Cosmo-
logical observations increased precision mandates the

has drawn the attention of the scientific society in the
last few years the modified theories of gravity also get
more attention of scientist (Dimakis et al., 2017). The
issue of energy momentum distribution in general
relativity has been a source of controversy and has
remained under investigation since the inception of
the theory. The issue has captured the keen interest of
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scientists who have dedicated substantial efforts
towards its resolution. Aygiin and Aktas (2023)
checked the Einstein, Bergmann-Thomson and
Landau-Lifshitz energy momentum distributions for
Texture metric in Teleparallel gravitation (TG) theory.
As we know that these energy momentum complexes
have different definitions, Einstein and Bergmann-
Thomson energy distributions give identical output for
the Texture metric in TG, while the output for
Landau-Lifshitz is different. For all types of space
times (diagonal and non-diagonal) in the context of
general relativity, it has been proven that the Tolman
and Einstein energy momentum tensors are identical,
as presented in this research. This research showed
that Tolman and Einstein super-potentials are different
in GR for diagonal and non-diagonal space times.
Section 2, presents a brief introduction to the Tolman
and Einstein energy momentum expression within the
framework of GR. In section 3, a set of space times is
chosen as a basis for establishing our findings. In
example 1 we consider Bell szeker metric to calculate
the energy momentum tensors for Tolman and
Einstein prescriptions and we see that the results of
both the prescriptions are same for this metric. In
example 2 the special class of ferrari-lbanez
degenerate space time is consider and the results for
energy momentum tensors are same for both the
prescriptions. The szekers class Il space time is
consider in the example 3 and the results of energy
momentum tensors are same for both Tolman and
Einstein complexes. In example 4 we take general
form of the diagonal space time in which the function
A, B, C, F are function of t, X, y and z and the results
of energy momentum tensors are same for both energy
momentum distributions. In example 5 we consider
the general Bianchi type diagonal space time and see
that the results of Tolman and Einstein energy
momentum tensors are same. Fram example 6 to
example 9 we consider different values of @ and S of
space time to get bianchi type I bianchi type 111 bianchi
type V and bianchi type VI , space times and see that
the results of Tolman and Einstein energy momentum
tensors are same for every space time. We consider
non static plane symmetric diagonal space time in
example 10 to verify that energy momentum tensors
of Tolman and Einstein give same results. In example
11 we take weyl metric and see that the results are
equivalent for both the prescriptions. Finally
Homogeneous Godel-type Metric is taken in example
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12 and the results for energy momentum tensors are
same for this metric. The physical relevance of the
equality between Tolman and Einstein energy
momentum tensors lies in the consistent description of
energy and momentum within gravitational fields.
These tensors are indeed equal, it suggests that
different theoretical approaches or calculations result
in the same physical interpretation of energy and
momentum in the context of general relativity.

Conclusion

The overall conclusion to this research is that in
general relativity the complexes of Tolman and
Einstein give same values for energy momentum
distribution for any metric (diagonal and non-
diagonal). We additionally note that the super-
potentials for all the different space times (diagonal
and non-diagonal) the Tolman and Einstein
prescriptions give different results in general in
general relativity.

Equating of Tolman and Einstein’s energy momentum
tensors provide a deeper insight into the physical
interpretation of energy and momentum within
gravitational fields. Understanding how these
different formulations converge helps in grasping the
true nature of energy momentum distribution in
curved space time. Overall, the confirmation that
Tolman and Einstein’s energy momentum tensors give
identical results across diverse space time geometries
would have far-reaching implications for our
understanding of gravity and the structure of the
universe. It would not only advance theoretical
physics but also have potential applications in various
scientific and technological domains.
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