
Introduction

The significant temporal variation in the spectral content

of seismograms require unconventional decomposition

methods for analysis. In 1990s, the theory of wavelet

was developed, which has since been utilized in

numerous fields of data analysis, including the petroleum

industry. Spectral decomposition techniques for seismic

interpretation have revolutionized oil and gas exploration

over the past decade.

Spectral decomposition techniques have made significant

strides in seismic interpretation for hydrocarbon

exploration over the past ten years. The spectral

decomposition method is a technique used for temporal-

spectral analysis of signals. In the petroleum industry,

many spectral decomposition techniques such as

continuous wavelet transform, cepstral transform,

matching pursuit decomposition, wigner-ville

distribution and have been used to enhance processing

algorithms, including the estimation of thin beds, channel

thickness and tuning hydrocarbon reservoirs. The

primary objective of these methods is to improve the

accuracy of detecting hydrocarbon zones, thereby

reducing drilling uncertainties. By enhancing the

interpretation of seismic data, reservoir engineers can

make better decisions regarding production plans

(Marianne and Micheal, 2006; Satish et al., 2005; John

et al., 2003; Avijit and David, 1995).
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In the research study by (Mela and Louie, 2001), the

author found that the spatial variability of porosity and

fracture content in reservoirs can be characterized using

statistical parameters such as correlation length and

fractal dimension computed from seismic data through

variograms and power spectra analysis. They found that

these parameters play a critical role in fluid flow

modeling of reservoirs. Although mapping permeability

required further exploration. (Sandhya and Cohen,

2004), used singularity spectrum to identify changes in

lithology and pore fluid types on both model studies

and real seismic data in their study. Whereas (Zhang et

al., 2020) used multifractal analysis to characterize the

heterogeneity of pore space in deep-buried dolomite.

Such additional parameters hence can be useful in

improving reservoir exploitation and estimating reservoir

properties.

Appropriate tools are essential to accurately analyse

homogeneity or heterogeneity of reservoir fluids (RF).

The current study describes the process of multifractal

analysis used to obtain useful fractal parameters and

generate a singularity spectrum. The use of singularity

spectrum attributes for analyzing the homogeneity or

heterogeneity of reservoirs through the analysis of well

log seismograms and geological modelling is also

discussed, with the aim of facilitating more accurate

reservoir simulation.

Singularity spectrum. Variation in the geology and

geophysics of the earth�s formation can cause
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discontinuities, or singularities, in certain attributes of

a seismic trace (Rai et al., 2020). These singularities

are highly informative, representing rapid changes in

variable values over very small increments of time or

position. They can be observed at points where the time

expansion of a signal contains components at fractional

powers of time. Multifractal analysis (MFA) is a

statistical technique for characterising a signal�s

singularity content, either locally or globally. MFA

parameters include fractal dimension (FD), holder

exponents (HE) and singularity spectrum (SS) (Lopes

and Betrouni, 2009). By using MFA to data, it is possible

to identify and classify various change in states within

the signal (Boulassel et al., 2021).

SS is a valuable analytical tool for examining the overall

singularity variation in a signal, providing information

on the distribution of HE. Several approaches have been

developed (Antonia et al., 2005) to compute the SS,

including the moment method, wavelet transform

modulus maxima method (WTMM), the gradient

histogram method, gradient modulus wavelet projection

(GMWP) method, wavelet leader-based multifractal

analysis (WL) and multifractal de-trended fluctuation

analysis (MFDA) method (Alam et al., 2023; Amoura

et al., 2022).

SS has emerged as a robust tool for analyzing time

series data across diverse fields such as biology (Westra,

2002), physics, economics and technical sciences (Khan

et al., 2006). It has been applied in various applications

of health sciences (Stosic and Stosic, 2006) and

engineering domain (Alam et al., 2023; Enescu, 2004;

Barry and Kisner, 2004).

The two key parameters used for classification in SS

analysis are the width (Da=a
max

-a
min

) and correlation

dimension (C
d
). The width is a measure of the signal�s

multifractality, where a wider spectrum indicates greater

complexity. Mathematically, it is calculated by

subtracting the strength of the strongest singularity from

that of the weakest. The singularity spectrum also

provides a set of generalized fractal dimensions,

including Hausdorff, information and correlation

dimensions. As mentioned by (Grassberger and

Procaccia, 1983), C
d
 measures set of random point�s

dimensionality.

This study aims to utilize SS to identify the parameters

that can aid in detecting homogeneity in the RF. Wavelet

transform is selected as the appropriate method for

identifying discontinuities and irregularities due to its

time-frequency localization property. The wavelet

transform modulus maxima (WTMM) method is applied

on seismograms and SS analysis is performed across

various conditions.

Material and Method

SS is used on synthetic seismograms generated from

earth models and well logs in this work. The character-

istics that affect the SS are specifically investigated.

The computation of SS based on WTMM consists of

the following basic steps described in Fig. 1. Further

details of it can be found in (Staal, 1995; Mallat and

Hwang, 1992).
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Fig. 1. Process of singularity spectrum.

Step I is to locate the wavelet transform modulus maxima

lines, which is performed by applying wavelet transform

to a function f(t) with time parameter t to a function

f(s,t) depends on a scaling attribute s and a temporal

attribute t with an appropriate analysing wavelet y.

This is expressed mathematically in Equation 1 reported

by (Mallat and Hwang, 1992).

f(s,t) = W{f,y}(s,t) = f(t) dt .........(1)

The local maxima of the absolute value of the WT as

a function of position at each scale is then found such

that:

A local extrema of  W{f,y}(s
0
,t) is that point (s

0
,t

0
)

such that  has a zero crossing at t=t
0

when t varies.

A modulus maxima is any point (s
0
,t

0
) such that

|W{f,y}(s
0
,t)|<|W{f,y}(s

0
,t

0
)| when t belongs to either

the right or left of the neighbourhood of t
0
 and

|W{f,y}(s
0
,t)|<|W{f,y}(s

0
,t

0
)| when t

0 belongs to the

other neighbourhood of t
0
.

Modulus maxima line is then any connected curve in

the scale time plane along which all points are modulus

maxima. Next, we track maxima lines for increasing

scale s by choosing at each scale the maximum between

all previous values at smaller scales s
0
<s. By this way,
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we replace the WT coefficient extremum value by the

maximum value along its line. Hence a modulus maxima

line is identified (Mallat and Hwang, 1992).

Step II involves the computation of the partition function

Z(s,q) in which we sum the maximum values of the

WT along the modified maxima lines to get the partition

function Z(s,q) by using the Equation 2. The partition

function Z(s,q) captures the statistical behaviour of the

coefficients at different moment orders. The moment

q therefore accentuates different aspects of the underlying

dynamical process (West and Grigolini, 2011). For q>0,

the partition function Z(s,q) emphasizes large

fluctuations and strong singularities, whereas for q<0,

the partition function stresses the small fluctuations and

the weak singularities. Thus, partition function measures

the scaling of moments and high order dependencies

of wavelet coefficients and the singularity structure all

in one (Staal, 1995).

Z(s,q)= (sup WTMML(m))
q
..........................(2)

Step III is to compute the scaling exponents t(q) or

mass exponent which is obtained as the slope of the

log-log plots of Z(s,q) versus s by linear regression.

It describes the statistical moments. For a monofractal

signal t(q) is a straight line (Staal, 1995). This is

mathematically shown in Equation 3.

t(q)=lim
s®0

.............................................(3)

Finally Step IV involves computing the singularity

spectrum (a, f(a)) from the t(q) through the Legendre

transform shown in Equation 4 and 5 where a is the

holder exponent and f(a) is the fractal dimension. f(a)

of a MF signal is similar to an inverted parabola (Staal,

1995).

a= ...................................................................(4)

f(a)=q -t(q) ....................................................(5)

From the singularity spectrum obtained we can extract

attributes such as width and correlation dimension.

Width is mathematically expressed as

Da=a
max

-a
min

..........................................................(6)

Note: that a
max

 is the maximum value of singularity and

a
min

 is the minimum value of singularity. C
d
 is the value

of fractal dimension at moment order q=2. Thus all the

synthetic seismograms from earth models and well logs

are analyzed by following the series of steps described

above.

Earth model seismograms. Seismograms for three

basic earth models-shale-oilsand, shale-gassand and

shale-waters and which is first created. Matlab software

is used to create the modelled seismic traces at a sampling

frequency of 50 Hz and a Ricker wavelet with a central

frequency of 60 Hertz. The rocks with RF (oil, gas)

shown in Table 1�s density velocity values are used.

The Gaussian�s first derivative at moment orders q =

[-6, 6] is used to analyse the data at a frequency range

of 20-80 Hz in order to identify low and high

irregularities, respectively. Using the FracLab

programme (FracLab, 2006), the correlation dimension

and width of the singularity spectrum are determined

and documented. The three scenarios listed below were

used to examine and analyse the singularity spectra of

the earth model seismo grams.

Geological model. The layers of the geological structures

are represented by the (Geological Model). For the

different RF, the impact of layers {4, 6, 8, 12} with a

fixed thickness (0.045 Km) on the SS was examined.

With varying numbers of layers, it was found that the

values of singularity spectrum attributes barely altered.

The singularity spectrum of seismic tracks with gas as

a RF is shown in Fig. 2(a) at various stratigraphic levels.

The analysed gas traces� singularity spectrum

characteristics are tallied and displayed in Table 2. As

can be seen, the Da and C
d
 of the spectrum vary very

little as the stratigraphy changes. We can observe a

comparable pattern in the seismic traces for oil, as

shown in Fig. 2(b), along with corresponding charac-

teristics are presented in Table 2.

Thickness. Earth�s layers occur naturally in varying

thicknesses. To investigate this, seismograms for a 14-

layered earth model were created with thicknesses of

{0.04, 0.05, 0.06} kms and the SS and its attributes

were evaluated. Figure 3 illustrates the singularity

spectra of gas and oil seismic traces for different

Table 1. Density and velocity of rocks

Velocity (Km/sec) Density (g/cc)

Shale 2.94 2.38

Gas sand 2.5 1.8

Oil sand 2.8 2.1



thicknesses. Despite these variations, the singularity

spectrum attributes remained relatively constant, as

evident from Table 3.

Reservoir fluid. Examining the singularity spectra and

its variations resulting from different RF such as oil

and gas is a critical aspect. To accomplish this, seismic

traces were generated for the respective RF, considering

distinct stratigraphy and thicknesses. Figure 4 illustrates

the SS for the different RF in the generated Seismic

model for an 8-layered stratigraphic model. It can be

observed that the gas reservoirs have a narrower width

Table 2. Effect of stratigraphy on singularity spectrum

attributes for a gas and oil-based reservoir with varying

stratigraphic layers.

Stratigraphic Gas reservoir Oil reservoir

layers C
d

Da C
d

Da

4.0 0.9100 0.5200 0.8000 0.9580

6.0 0.9300 0.4700 0.8100 0.9480

8.0 0.9340 0.4600 0.8200 0.9480

12.0 0.9380 0.4500 0.8380 0.9200

Gas-4L

Gas-6L

Gas-8L

Gas-12L
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Fig. 2. Singularity spectra of different stratigraphic

based seismic traces, (a) gas-based

reservoir, (b) oil-based reservoir.
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Fig. 3. Singularity spectra of different stratigra-

phic thickness based seismic traces traces

(a) gas-based reservoir (b) oil-based

reservoir.

Table 3. Singularity spectrum features of seismic

traces across different thickness for a gas and oil-based

reservoirs.

Stratigraphic Gas reservoir Oil reservoir

thickness (m) C
d

Da C
d

Da

40 0.9350 0.4500 0.8300 0.9000

50 0.9360 0.4730 0.8380 0.9200

60 0.9380 0.4700 0.8200 0.9572
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compared to the oil reservoirs. Similar observation is

seen across the singularity spectral parameters in earth

modelled seismograms for various stratigraphy and

thickness in Table 2 and 3. Notably, the higher C
d
 of

gas indicates its irregularity, highlighting the potential

usefulness of the singularity spectrum in hydrocarbon

detection and delineation through seismic traces.

Well log simulation. Sonic and density logs of four

distinct wells (WA, WB, WC and WD) with confirmed

RF were collected. Using SyntoolTM (SynTool, 2006),

a well log seismogram is produced at a sample frequency

of 50 Hz using the negative normalized second derivative

of a Gaussian function, with a peak frequency of forty

Hertz. There is also stratigraphical correlation between

the well log seismograms. In the current study, a uniform

or homogeneous well is considered as a well with one

reservoir fluid but a heterogeneous well contains multiple

reservoir fluids. WA has oil where gas was present in

both WB, WC and WD has both RF.  Because the

method employed low sampling frequency, each detected

hydrocarbon zone is estimated to comprise only 3-4

data samples, with each sample representing an 8-foot

formation. To ensure an adequate data size for the

analysis of SS, the detected zones are upsampled by

20. The SS of these zones are then evaluated at a range

of [20, 80] Hz using first derivative of gaussian. The

same moment order range is used.

The SS of the homogeneous reservoirs in the WB and

stratigraphically correlated wells (WA and WD) are

depicted in Fig. 5(a,b), while Fig. 6(a,b) illustrate the

SS of the heterogeneous reservoirs in the WD and

stratigraphically correlated wells (WA, WB, WD). The

SS attributes are presented in Tables 4 and 5. The results

indicate that the values of spectral parameter vary with

change in RF, underscoring the usefulness of this

technique in detecting the similar RF in a zone.

Results and Discussion

Earth model seismograms. Geological model. The

analysis of Table 2 reveals that there is a negligible

variation in a and C
d
 of both RF as the stratigraphic

layers increase. Although the count of transitions

increases with the increasing number of layers, the

transient type remains constant, leading to the same set
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Fig. 4. Singularity spectra of different reservoir

fluids seismic traces for an 8-layer

stratigraphy of 0.045 Km thickness.
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Fig. 5. Singularity spectrum of homogeneous

reservoirs across (a) vertical well WB

with two zones z1, z2 of gas reservoir and

(b) a stratigraphic correlated well WA and

WD with oil reservoir

(a)

(b)
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5 m, 10 m and 20 m, could provide further insights.

Thus, by employing a consistent window length, it is

possible to compare and measure SS attributes with a

high degree of reliability.

Reservoir fluid. Figure 4 shows the singularity spectra

for an oil and gas trace with an 8-layered stratigraphy

of 0.045 Km constant thickness. We can see that the

singularity spectra can be used as a possible parameter

for hydrocarbon delineation. It was observed that gas

seismic traces contain strong transients i.e. (stronger

singularities) compared to oil seismic traces, resulting

in lower values of i.e. (amax=2.46). On the other hand,

the presence of weaker singularities in oil seismic traces

leads to higher values of i.e. (amax=2.9), overall

resulting in wider a of the oil. It is common to observe

strong singularities in gas traces due to the sharp

variations they exhibit, which is why gas occupies

higher C
d
 values than oil. Similarly, from Table 2 we

can conclude that with changing stratigraphy and

constant thickness, oil reservoir attains higher width

Da and lower C
d
 as compared to gas reservoir which

exhibits lower Da and higher C
d
. We also derive the

same conclusion from Table 3 which represents spectral

parameters across changing thickness for a constant 14-

layer stratigraphy.

The analysis of the singularity spectrum and its attributes

can provide valuable information on the behaviour of

seismic traces and can help in identifying the presence

of oil and gas reservoir fluids. Therefore, the

development of an analysis tool based on the singularity

Table 4.  Singularity spectrum parameters of the well

section mentioned in Fig. 5, depicting a homogenous

presence of reservoir fluid.

Gas C
d

Da Oil C
d

Da

samples samples

WB-z1 0.7200 1.4830 WA-A 0.6490 1.6700

WB-z2 0.7300 1.4800 WD-A 0.6690 1.6800

Table 5.  Singularity spectrum parameters of the well

section mentioned in Fig. 6, depicting a heterogeneous

presence of reservoir fluid.

Samples C
d

Da Samples C
d

Da

WD-z1 (Gas) 0.6100 1.8600 WA-B (Oil) 0.7390 0.9030

WD-z3 (Oil) 0.7400 0.900 WB-B(Gas) 0.5300 1.4800

WD-z4 (Gas) 0.6500 1.6800 WD-B(Gas) 0.5300 1.4200
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Fig. 6. Singularity spectrum of heterogeneous

reservoirs across (a) vertical well WD with

three zones z1, z3 and z4 and (b) a

stratigraphic correlated well WA, WB and

WD, with the presence of both oil and gas

reservoir fluid.

of HE values. This suggests that, for the same RF, the

SS behavior remains consistent as the number of layers

increases. In essence, this implies that the SS is not

dependent on the stratigraphic layers with similar RF.

Thickness. Based on the analysis of Table 3, one can

observe that the SS attributes exhibit negligible changes

as the thickness increases. With increasing thickness,

a similar transient occurs. Therefore, within the sampled

window, the number of transients remains constant. The

implication of this discovery is that the SS remains

unaffected by the thickness of the reservoir, indicating

its independence on this parameter. However, it should

be noted that testing smaller thicknesses, such as 1 m,
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spectrum can be useful for the delineation of these

fluids.

Well log seismo-grams. The SS attributes, such as Cd

and Da, show a continuous change in value for

homogeneous oil and gas RF in both vertical and

stratigraphic correlated wells, as seen in Table 4. This

continuity indicates that SS analysis can be used to

identify the homogeneity of RF in seismic sections.

Interestingly, similar SS and attributes are observed for

the same reservoir fluid, despite existing at different

stratigraphic levels and thicknesses in the analyzed

wells. This finding suggests that SS analysis is

independent of stratigraphy and thickness in well log

seismograms.

Table 5 reveals that for heterogeneous vertical wells/

stratigraphic correlated wells, the singularity spectrum

attributes (correlation dimension, width) exhibit abrupt

changes. Such changes suggest variations in the

properties of the reservoir fluid. For instance, in Table

5, the correlation dimension decreases from 0.739 to

0.53 as we move from oil to gas zone, and then remains

constant at 0.53 when we hit another gas zone. Thus,

SS analysis can be employed as a potential tool for

accurately classifying and delineating RF, facilitating

their modeling.

Conclusion

The study highlights the significance of SS analysis in

identifying the homogeneity of reservoir fluids through

seismic modeling and well log seismograms. By

analyzing the various seismic earth models, the study

revealed that SS behaviour is only sensitive to changes

in the reservoir fluid and not influenced by stratigraphy

and thickness. Even with changing stratigraphy and

increasing thickness, occurrence rate did not change,

indicating the independence of the SS. However, the

SS attributes, such as a and C
d
, showed a significant

difference with changing reservoir fluids. The seismic

trace of gas contains strong transients resulting in a low

width a and high fractal dimensions, while oil seismic

trace has weaker singularities, resulting in wider width

and lower fractal dimension values. This finding

emphasizes the importance of singularity spectrum

analysis in accurately delineating and classifying

reservoir fluids.

In addition to the existing detection methods, the SS

parameters can be utilized to identify the consistency

of the reservoir fluids. However, these parameters should

be complemented with other analytical techniques to

create precise models of the fluid flow in the reservoir.

Thorough seismic data analysis is critical for improving

the oil and gas industry�s performance by enabling

efficient well placement, reducing drilling uncertainties,

and improving the accuracy of seismic volume

interpretation.
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