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Engineering, technology and applied sciences pheno-

mena like mechanics and gravity are all described by

PDEs with non-linearities. Non-linear PDEs are typically

helpful tools that can be used in a range of areas to

simulate nonlinear dynamic phenomena including fluid

dynamics, solid state physics, mathematical biology

and plasma physics. The shallow water propagation is

explained by a number of well-known completely

integral PDEs, like Boussinesq, Korteweg and De-Vries

(KdV) (Korteweg et al., 1895), Whitham-Broer-Kaup

(WBK) (Broer, 1975; Kaup, 1975; Whitham, 1967) and

Kadomtsev and Petviashvili (KP) (Kupershmidt, 1985;

Kadomtsev and Petviashvili, 1970) equations and so

forth. The harry dym (HD) equation is a significant

dynamical equation that can be integrated and has

applications in a number of physical systems. Kruskal

and Moser (1975) reported the first to use the HD

equation. This is credited to a paper written by Harry

between 1973 and 1974. The dym equation illustrates

a situation where dispersion and nonlinearity are

intertwined. The nonlinear evolution equation known

as HD is totally integrable. It is fantastic because,

although lacking the Painleve feature, it complies with

an unlimited number of conservation laws, bi-hamiltonian
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Abstract. Differential equations, which can be found in many branches of physics and engineering which

are produced through mathematical modeling of many physical systems. A crucial dynamical equation that

has uses in a number of physical systems is the HD equation. This is one of the significant nonlinear

evolution equation that comes up when studying solitons. In this paper, the HD equation is numerically

solved using a local radial basis function (LRBF) approach with the goal of creating local spatial

approximation at each point in space as a consequence of local methodology. To deal with time variable,

Runge-Kutta scheme of order four is applied. For proving suggested method accuracy and efficiency some

error norms viz LRMS, L¥ and L2 of test problems are calculated. The solutions obtained by LRBF method

are also compared to past studies, and the results of proposed approach are better and more closely match

to the exact solution.
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structure and symmetries (Nadjafikhah and Kabi-Nejad,

2013; Gesztesy and Unterkofler, 1992). The KdV equa-

tion and the HD equation are closely related and the

HD equation also has applicability to hydrodynamics

issues (Vasconcelos and Kadanoff, 1991). In addition

to these facts, the HD equation is studied in theory of

solitons especially and in mathematics (Li and Xu,

2020, Xiao and Fan, 2019; Fuchssteiner et al., 1992).

The traditional nonlinear HD equation has been solved

by numerous authors using analytical and numerical

techniques, see for example (Assabaai, 2021; Assabaai

and Mukherij, 2020; Fonseca, 2017; Ghiasi and Saleh,

2017; Rawashdeh, 2014; Mokhtari, 2011; Novikov,

1999; Fuchssteiner et al., 1992).

Meshfree methods are becoming more popular,

emerging, interesting and fascinating numerical

techniques due to the ability to solve those physical and

engineering problems with no meshing or minimum of

meshing for which the traditionally used mesh-based

methods are not suited like finite volumes, finite

differences, finite elements, moving least square, element

free galerkin, point interpolation method which also

reproducing kernel particle method and boundary

element free method. RBFs methods appears to be really

consists and most prominent meshless methods among

the family of meshless methods, while looking at the
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interpolation of multidimensional scattered data and

have received recently a tremendous and considerable

attention in scientific community because of its capacity

to achieve spectral accuracy, efficiency and high flexi-

bility in solving complex PDEs, integral equations and

fractional equations in comparison to other advanced

approaches (Franke and Schaback, 1998a and 1998b;

Madych and Nelson, 1992 and 1990; Kansa, 1990a and

1990b; Micchelli, 1984). The most commonly used

kernel in meshless techniques is the multi-quadric (MQ)

kernel suggested by (Hardy, 1971) using radial basis

function to solve PDEs. A localized RBF approach was

also separately and concurrently proposed by different

authors, which, even today, is a significant and useful

finding (Taufiq and Uddin, 2021; Uddin and Taufiq,

2020; Uddin and Taufiq, 2019a and b). The local Kansa

approximation approach, the method of approximate

particular solution (MAPS) and the method of particular

solution (MPS) all uses localized RBFs approach. These

methods often produce low conditioned system matrices

with decent accuracy. Below Table 1, lists some of

RBFs usually used in literature.

CNM < CNM(minimum) and CNM > CNM(maximum);

P,Q,R=SVD(S); CNM = 
maximum(S)___________

minimum(S) ; if, CNM <

CNM(minimum), z = z - Dz; CNM > CNM(maximum), z = z
+ Dz; end z (Best optimal value for shape parameter)

= z; end

The HD equation in classical order for the aforemen-

tioned phenomena appears as:

¶n(z,t) ¶3n(z,t)______ = n3 (z,t) _______, (z,t) Î [a,b]´[O,T] ..... (1)
    ¶t     ¶z3

based on given initial condition together with the

boundary conditions as follows:

n(z,0) = r0(z) = r(z) .............................................. (2)

................................................ (3)

where:

p0, q1, q2 and are the appropriate constants and are the

results of equation (1) exact solution, that was stated

by (Mokhtari, 2011) as under:

        3Ö g   2
n(z,t) = [h _ ____ (z + gt)

__
] ............................... (4)

          2   
3

PDEs via local RBF approach. We will now discuss

a local RBF approximation technique for general time

dependent partial di erential equations in the spatial

domain Ws Ì Rs, s ³ 1 as follows:

   Dtn(z,t)_Ln(z,t)=F(z,t), (z,t) Î Ws´(0,Tf)

   n(z) = n0, z Î Ws, t = 0,      .... (5)

   Bn(z,t) = C(z), z Î ¶Ws, t > 0

where:

is the linear differential operator and  is the boundary

operator, while time domain is represented by (0, Tf),

where Tf is the final time.

Approximation of spatial variable. Consider {z1, z2,

......, zN} Î W Ì Rs, s ³ 1 as a set of sample data nodes

with associated function values {n(z1), n(z2), ..., n(zN)}

Î R, the localized RBF approach at z i Î W approxi-

mates the function n(z i) as follows:

Table 1. RBFs usually used in literature with their

classification

Name and type f(r)

Multiquadric (MQ)-RBF                                        Ö1+(z r)2

Gaussian (GA)-RBF e
_(z r)2

Thin plate spline (TPS)-RBF r2blog (r)

where:

z an open parameter that has a real value greater than

zero. Yet a detailed investigation of the best value for

this parameter is currently ongoing and for researchers,

it continues to be a challenge (e.g, view the citations

(Scheuerer, 2011; Trahan and Wyatt, 2003; Rippa, 1999;

Foley, 1994; Tarwater, 1985; Franke, 1982; Hardy,

1971). Localized RBF algorithms are utilized to solve

complicated problems on a large scale without the

requirement for conditioning. We used the following

approach in our calculation to choose an appropriate

value of the shape parameter, which is related to the

theory of local RBF interpolation.

Algorithm. start: CNM = 0; CNM(minimum) = 1012;

CNM(maximum) = 1016;

where:
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n(z i, t) = åN
j = 1 aj (t)f (||z i - z j ||2, z),

z j Î Wi Ì W Ì Rs , s ³ 1 ........................................ (6)

where:

the nodes z  relate to the region including the neigh-

bouring nodes, the vector of unknown expansion

coefficient is represented by aj (t) = [a1 (t), ....., aN]T

and r = ||z i - z j ||2 represent the distance between centers

z i, z j in Euclidean norm, while f(r) is the RBF function

that has been defined for r ³ 0. As a result, for each

local domain Wi Ì W, following is the N number of

n ´ n linear systems:

ni = Hiai, i = 1,2, ..., N ............................. (7)

where:

the interpolation matrix Hi entries are k
i
kj = f(||zk -

z j ||), zk - z j ÎWi and must be solved for determination

of unknown coefficients vector a j�s. We now have an

approximation for the linear diferential operator  as

follows:

n(z i -, t) = åN
j = 1 aj (t) f (||z i - z j ||2, z),

z j Î Wi Ì W Ì Rs , s ³ 1 ........................................ (8)

Equation (8) can be expressed as the dot product of two

vectors as under:

n(z i, t) = Kiai ................................... (9)

where:

the expansion coefficients vector a i is of size n ´ 1 and

Ki is a vector below with elements that is in size 1 ´ n

Ki = f (||z i - z j ||2, z), z j Î Wi .............. (10)

Solving equation (7) for unknown coefficients vector

a j�s, we have

ai, = (Hi)-1ni ........................................... (11)

Plugging back the values of a j�s form equation (11)

into equation (9), we obtain

n(z i -, t) = Ki (Hi)-1ni = Mini ............. (12)

where:

Mi = Ki (Hi)-1 ......................................... (13)

is the weight that corresponds to center z j. As a result,

we have

K = Mn ................................................ (14)

where:

the sparse differentiation matrix M has an order of N

´ N. The matrix M has N - n zeros and non-zero

components in each row.

Approximation of temporal variable. The following

system of ODEs was created after spatial local RBF

approximation

DtK = M(n) ............................................ (15)

To discretize equation (15) in time we can use any ODE

solver like ode113, ode23 and ode45 from Matlab. The

starting vector will be the initial solution u0. ode45 is

based on an explit Runge-Kutta (4,5) formula. In general,

ode45 is the best function to apply as a first try for most

problem. A good ODE solver will automatically select

a reasonable time step dt and detect the stiffness of the

ODE system. For this ODE computation we will use

fourth order Runge-Kutta method and select the time

step dt manually.

Stability of local RBF approach. Our numerical

technique in the current local RBF method of lines

(MOL) approach is as under:

Kt = Mn ................................................. (16)

A system of time-dependent ODEs is created here from

the time-dependent PDE. The concept of using the finite

difference method to solve the coupled system of ODEs

is known as the �method of lines� (e.g Runge-Kutta,

etc.). A rule of thumb is used to look at the stability of

lines approach numerically. If the eigenvalues of the

time-discretization operator�s stability zone, scaled by

dt, fall inside the boundaries of the linearized spatial

discretization operator, the technique of lines is stable

(Trefethen, 2000). The eigenvalues for which the method

produces a bounded solution make up the complex

plane that contains the stability region. Our numerical

scheme is described in equation (16) for the current

meshless approach of lines. We may examine the stable

and unstable eigenvalue spectrum for the above model

by calculating the eigenvalues of the matrix M, scaled

by dt.

108 Hameed Ullah Jan et al.



Numerical results. With the help of error norms L_¥,

L_2 and L_RMS outlined below and numerical example,

this section aims to demonstrate the remarkable

behaviour of our method

      L¥= ||nexact-napprox||¥=max|ni
exact-ni

approx|

      L2= ||nexact-napprox||2= 

      LRMS=

where:

                |b-a|
      dx = _____
                  N

For instance take the governing equation given in equation

(1) as well as the initial and boundary conditioned provided

in equations (2)-(3) with varying parameters as follows:

Test problem. We consider HD model equation given

in equation (18) and its exact analytical solution given

Table 2. Comparative analysis of L¥ (n) error at time t = 0.005 for some z values associated with given test

problem

RBF T values z values z values L¥ (n) L¥ (n) [10]

MQ 0.001 0.11 135 7.382´10-4 4.118´10-4

0.002 1.477´10-3 1.900´10-3

0.003 2.215´10-3 4.000´10-3

0.004 2.954´10-3 2.700´10-3

0.005 3.692´10-3 5.700´10-3

IMQ 0.001 4.50 1760 8.580´10-4 4.319´10-4

0.002 1.716´10-3 2.600´10-3

0.003 2.574´10-3 3.100´10-3

0.004 3.433´10-3 6.200´10-3

0.005 4.291´10-3 6.700´10-3

GA 0.001 0.12 1760 8.874´10-4 2.618´10-4

0.002 1.775´10-3 9.823´10-4

0.003 2.663´10-3 1.700´10-3

0.004 3.550´10-3 2.400´10-3

0.005 4.438´10-3 3.100´10-3

IQ 0.001 0.08 115 7.338´10-4 2.034´10-4

0.002 1.468´10-3 1.700´10-3

0.003 2.202´10-3 1.800´10-3

0.004 2.936´10-3 4.500´10-3

0.005 3.670´10-3 5.300´10-3

Fig. 1. Graphical overview of L¥ (n), L2 (n)  and LRMS(n) error norm for MQ and IMQ RBF (left and right)

at time  for a some t = 0.005 for a some z values associated with Table 7 for given test problem.
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quadratic (IQ) F(r) = 
      1_______
 1+(z r)2  radial basis functions

with the shape parameter z, whose ideal value was

determined by the algorithm previously stated. Tables

2 and Fig. 1-2 shows the findings of our suggested

approach compared to earlier methods described in

literature, respectively.

in equation (19), with parameters h=4, g=1 over space

and time interval [0,1]×[0,0.005] respectively and

the values of the step size dx=h=0.1 and time step

dt=0.001. We have employed multiquadric (MQ)

F(r) = Ö1 + (zr)2, Inverse multiquadric (IMQ) F(r)

= 
       1________

Ö1+(z r)2 , Gaussian (GA) F(r) = e-(zr)2 and Inverse

Table 3. Comparative analysis of L2(n) error at time t = 0.005 for some z values associated with given test problem

RBF T values z values z values L¥ (n) L¥ (n) [10]

MQ 0.001 0.11 135 3.840´10-4 1.892´10-4

0.002 7.684´10-4 8.738´10-4

0.003 1.153´10-3 2.500´10-3

0.004 1.538´10-3 1.600´10-3

0.005 1.924´10-3 2.500´10-3

IMQ 0.001 4.50 1760 3.531´10-4 2.457´10-4

0.002 7.065´10-4 1.600´10-3

0.003 1.060´10-3 1.800´10-3

0.004 1.414´10-3 3.500´10-3

0.005 1.769´10-3 4.000´10-3

GA 0.001 0.12 1760 3.624´10-4 1.495´10-4

0.002 7.250´10-4 6.893´10-4

0.003 1.088´10-3 1.300´10-3

0.004 1.451´10-3 2.000´10-3

0.005 1.814´10-3 2.600´10-3

IQ 0.001 0.08 115 3.550´10-4 1.295´10-4

0.002 7.103´10-4 1.200´10-3

0.003 1.066´10-3 1.200´10-3

0.004 1.422´10-3 3.000´10-3

0.005 1.778´10-3 3.700´10-3
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 Fig. 2. Graphical overview of L¥ (n), L2 (n)  and LRMS(n) error norm for GA and IQ RBF (left and right) at

time t = 0.005 for a some z values associated with table 8 for given test problem.
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Conclusion

In this paper, RBF for solitary wave model equations,

such as Harry Dym (HD) equation is examined and

discussed in detail along with some basic concepts and

de?nitions. A numerical scheme known as the localized

RBF meshless approach is utilized to resolve the

aforementioned model. The Runge-Kutta (RK-4) time

steeping strategy is utilized to carry out the temporal

variable in the specified model equation. To evaluate

the accuracy of our suggested technique, we have

calculated LRMS, L¥ and L2 error norms, tables and

graphs. Our methodology structure to other existing

numerical methods, is less dificult and more straight-

forward to treat any higher order nonlinear PDEs. This

method has several major advantages over others,

including convergence rate, stability, sparse and local

diferentiation matrices, and reasonable processing cost.

Remarkably, it is clear from our findings that we attain

higher accuracy using very small values of the shape

parameter z with the help of mentioned algorithm, than

the so large values previously employed in literature.

Moreover, it can be used with other types of integral

and non-integral PDEs.
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