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 finance (Edeki et al., 2023; Fadugba and Ghevariya, 

2023; Fadugba et al., 2023a&b; Vijayan and 
Manimaran, 2023; Fadugba et al., 2022; Fadugba and 
Nwozo, 2020; Fadugba, 2019; Fadugba and Nwozo, 
2018; Ghevariya, 2018; Fadugba and Nwozo, 2015; 
Fadugba, 2014; Manuge and Kim, 2014; Nwozo and 
Fadugba, 2014a&b). For more details on the 
definitions of RDTM and its fundamental properties, 
see (Keskin and Oturanc, 2010a&b; Wilmott, 2006). 
This paper introduces the Reduced Differential 
Transform Method (RDTM) as a novel and efficient 
approach for solving the European Style Call Option 
Model (ESCOM) using the Modified Log-Payoff 
Function (MLPF). The primary aim is to leverage 
RDTM’s potential to simplify and accurately solve 
complex financial models. The arrangement of the 
remaining part of the paper is as follows: section 2 
captures the governing model for ESCO with MLPF 
and presents its reduction to a standard heat-like 
equation. This transformation is pivotal in facilitating 

Introduction  
Option pricing is one of the most prominent and 
dynamic areas in computational finance. Since the 
inception of the Black-Scholes Model (BSM) 
valuation approach, global trading in derivatives has 
increased dramatically (Fadugba and Nwozo, 2016; 
Black and Scholes, 1973). Many researchers have 
utilized the BSM for linear payoff structures, a 
testament to its robustness and accuracy. Following 
the BSM’s remarkable success with European Style 
Call Options (ESCO), numerous other pricing 
schemes have been devised to accommodate both 
linear and non-linear payoff functions; see (Boyle et 
al., 1997; Cox et al., 1979; Brennan and Schartz, 1978; 
Merton, 1976). The rich body of literature in this 
domain includes various transform methods and 
mathematical frameworks tailored for computational 

Abstract. This study introduces the Reduced Differential Transform Method (RDTM) as a novel and 
efficient approach for solving the European Style Call Option Model (ESCOM) using the Modified Log-
Payoff Function (MLPF). It begins with a comprehensive overview of RDTM, including its theoretical 
framework, inverse operation and fundamental properties. A detailed analysis of RDTM’s methodology 
follows, highlighting its advantages in simplifying complex financial models. The study then focuses on 
transforming the governing model for ESCOM with MLPF into a standard heat-like equation. This critical 
transformation enables the application of RDTM to effectively solve the simplified equation. The process 
of deriving the standard heat like equation from the original ESCOM with MLPF is meticulously detailed, 
showcasing the method’s robustness and precision. RDTM is applied to solve the standard heat-like 
equation, resulting in a valuation formula for ESCOM with MLPF. This formula serves as a practical tool 
for financial analysts and researchers in option pricing. The study includes an extensive evaluation of 
RDTM’s suitability, effectiveness and accuracy in solving ESCOM with MLPF by testing various selected 
parameters against the fundamental analytical formula. The results demonstrate the method’s reliability 
and precision. In conclusion, this work underscores RDTM’s potential as a powerful and versatile tool for 
financial modeling and option pricing. The findings indicate that RDTM simplifies the computational 
process and enhances the accuracy of solutions, making it an asset for financial analysts and researchers. 
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  the application of RDTM to solve the simplified 
equation effectively. Section 3 focuses on the solution 
of ESCOM with MLPF via RDTM, detailing the step-
by-step process and the derivation of the valuation 
formula. This formula serves as a practical tool for 
financial analysts and researchers engaged in option 
pricing. Section 4 applies RDTM to ESCO with MLPF 
using selected parameters. The section includes a 
thorough evaluation of RDTM’s suitability, 
effectiveness and accuracy in solving ESCOM with 
MLPF. Various parameters are tested against the 
fundamental analytical formula, showcasing the 
method’s reliability and precision. Section 5 discusses 
the results, highlighting the practical implications of 
using RDTM in real-world financial scenarios. It 
emphasizes how RDTM simplifies computational 
processes, reduces calculation time and enhances 
result accuracy. It also presents the conclusion, 
summarizing the findings and underscoring the 
potential of RDTM as a powerful and versatile tool for 
financial modeling and option pricing. This section 
also suggests directions for future research, 
emphasizing the scalability and adaptability of RDTM 
in various financial contexts. The introduction of 
RDTM in the context of ESCOM with MLPF 
represents a significant advancement in the field of 
computational finance. By reducing the complexity of 
traditional models and improving computational 
efficiency, RDTM offers a robust alternative to 
conventional methods. This paper aims to demonstrate 
the practical benefits of RDTM and its potential to 
transform the landscape of option pricing and financial 
modeling. 
 
Governing equation. ESCOM with ML-payoff 
function. The European Style Call Option Model 
(ESCOM) with Modified Log-Payoff Function 
(MLPF) is described by the partial differential 
equation: 
 
𝜕𝜕𝐶𝐶𝐸𝐸
𝜕𝜕𝜕𝜕

+ 1
2
𝜎𝜎2𝑆𝑆2 𝜕𝜕

2𝐶𝐶𝐸𝐸
𝜕𝜕𝑆𝑆2

+ 𝑟𝑟𝑆𝑆 𝜕𝜕𝐶𝐶𝐸𝐸
𝜕𝜕𝑆𝑆

− 𝑟𝑟𝐶𝐶𝐸𝐸 = 0 ...............(1) 
 
subject to the boundary conditions:  
 
lim
𝑆𝑆→∞

𝐶𝐶𝐸𝐸(𝑆𝑆, 𝑡𝑡) = 𝑆𝑆 .....................................................(2) 
 
lim
𝑆𝑆→0

𝐶𝐶𝐸𝐸(𝑆𝑆, 𝑡𝑡) = 0 ......................................................(3) 
 
and the MLPF (finite time condition); 

𝐶𝐶𝐸𝐸(𝑆𝑆, 𝑡𝑡) = 𝑚𝑚𝑚𝑚𝑚𝑚[𝑆𝑆𝑆𝑆𝑆𝑆(𝑆𝑆𝐾𝐾−1), 0] ............................. (4) 
 
The price of ESCOM denoted by CE=CE (S,t), depends 
on the following parameters: current time t, strike 
price K, volatility σ, maturity date T, stock price S and 
risk-natural rate r. 
 
Reduction of ESCOM with MLPF to heat-like 
equation. To simplify equation (4) into a heat-like 
equation, we employ a transformative change of 
variables, effectively eliminating the terms 𝛿𝛿

2𝐶𝐶𝐸𝐸
𝛿𝛿𝑆𝑆2

 and 
𝛿𝛿𝐶𝐶𝐸𝐸
𝛿𝛿𝑆𝑆

. The following transformations redefine the 
problems: 
 
𝑆𝑆 = 𝐾𝐾𝑒𝑒𝜕𝜕 ................................................................. (5) 
 
𝑡𝑡 = 𝑇𝑇 − 𝑟𝑟

0.5𝜎𝜎2
 .......................................................... (6) 

 
𝐶𝐶𝐸𝐸 = 𝐾𝐾𝐾𝐾(𝑦𝑦, 𝑡𝑡) ........................................................ (7) 
 
𝜌𝜌 = 2𝑟𝑟

𝜎𝜎2
 ..................................................................... (8) 

 
Thus, equation (4) evolves into a transformed heat-
like equation: 
 
𝜕𝜕𝑣𝑣
𝜕𝜕𝜏𝜏

= 𝜕𝜕2𝑣𝑣
𝜕𝜕𝑦𝑦2

+ (𝜌𝜌 − 1) 𝜕𝜕𝑣𝑣
𝜕𝜕𝑦𝑦
− 𝜌𝜌𝐾𝐾,−∞ < 𝑦𝑦 < ∞, 0 ≤ 𝑟𝑟 ≤

𝜎𝜎2𝑇𝑇
2

 .......................................................................... (9) 
 
with the initial conditions: 
 
𝐾𝐾(𝑦𝑦, 0) = max(𝑦𝑦𝑒𝑒𝑦𝑦, 0) ........................................ (10) 
 
Remark I. This transformation not only simplifies the 
mathematical representation but also enhances the 
understanding and computational efficiency of 
modeling European Style call Options with Modified 
Log-Payoff Functions (MLPF). It provides a clear 
path towards practical applications in financial 
analysis and risk management.  
 
Solution of the ESCOM with MLPF via RDTM. 
Applying RDTM (Keskin and Oturanc, 2010a) to 
equations (9) and (10) and rearranging terms, one obtains: 
 
(𝑚𝑚 + 1)𝑉𝑉𝑚𝑚+1(𝑦𝑦) = 𝜕𝜕2𝑉𝑉𝑚𝑚(𝑦𝑦)

𝜕𝜕𝑦𝑦2
+ (𝜌𝜌 − 1) 𝜕𝜕𝑉𝑉𝑚𝑚(𝑦𝑦)

𝜕𝜕𝑦𝑦
−

𝜌𝜌𝑉𝑉𝑚𝑚(𝑦𝑦) ................................................................. (11) 
 
and  
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𝑉𝑉0 = max(𝑦𝑦𝑒𝑒𝑦𝑦, 0) ................................................ (12) 
 
for 𝑚𝑚 = 0 
 
𝑉𝑉1(𝑦𝑦) = 𝜕𝜕2𝑉𝑉0(𝑦𝑦)

𝜕𝜕𝑦𝑦2
+ (𝜌𝜌 − 1) 𝜕𝜕𝑉𝑉0(𝑦𝑦)

𝜕𝜕𝑦𝑦
− 𝜌𝜌𝑉𝑉0(𝑦𝑦) .......... (13) 

 
by means of equation (12) and (13) yields 
 
𝑉𝑉1 (𝑦𝑦) = 𝜕𝜕2

𝜕𝜕𝑦𝑦2
max(𝑦𝑦𝑒𝑒𝑦𝑦, 0) + (𝜌𝜌 −

1) 𝜕𝜕
𝜕𝜕𝑦𝑦

max(𝑦𝑦𝑒𝑒𝑦𝑦, 0) − 𝜌𝜌max(𝑦𝑦𝑒𝑒𝑦𝑦, 0) .................... (14) 
 
but 
 
𝜕𝜕
𝜕𝜕𝑦𝑦

max(𝑦𝑦𝑒𝑒𝑦𝑦, 0) = max(𝑒𝑒𝑦𝑦(y + 1), 0) 

 
which implies that: 
 
𝜕𝜕2

𝜕𝜕𝑦𝑦2
max(𝑦𝑦𝑒𝑒𝑦𝑦, 0) = max(𝑒𝑒𝑦𝑦(y + 2), 0) 

 
therefore, 
 
𝑉𝑉1(𝑦𝑦) = (𝜌𝜌 + 1) max(𝑒𝑒𝑦𝑦, 0) ................................ (15) 
 
for m = 1 
 
𝑉𝑉2(𝑦𝑦) = 𝜕𝜕2𝑉𝑉1(𝑦𝑦)

𝜕𝜕𝑦𝑦2
+ (𝜌𝜌 − 1) 𝜕𝜕𝑉𝑉1(𝑦𝑦)

𝜕𝜕𝑦𝑦
− 𝜌𝜌𝑉𝑉1(𝑦𝑦) .......... (16) 

 
since 
 
𝜕𝜕2𝑉𝑉1(𝑦𝑦)
𝜕𝜕𝑦𝑦2

= 𝜕𝜕𝑉𝑉1(𝑦𝑦)
𝜕𝜕𝑦𝑦

= (𝜌𝜌 + 1) max(𝑒𝑒𝑦𝑦, 0) , 𝑉𝑉2(𝑦𝑦) = 0
 .............................................................................. (17) 
 
similarly: 
 
𝑉𝑉3(𝑦𝑦) = 0,   𝑉𝑉4(𝑦𝑦) = 0,   𝑉𝑉5(𝑦𝑦) = 0 ..................... (18) 
 
containing this way:  
 
𝑉𝑉𝑚𝑚(𝑦𝑦) = 0, for 𝑚𝑚 ≥ 6. Using the inversion formula of 
RDTM, one obtains: 
 
𝐾𝐾(𝑦𝑦, 𝜏𝜏) = ∑ 𝑉𝑉𝑖𝑖(𝑦𝑦)𝜏𝜏𝑖𝑖∞

𝑖𝑖=0 = max(𝑦𝑦𝑒𝑒𝑦𝑦, 0) + (𝜌𝜌 +
1) max(𝑒𝑒𝑦𝑦, 0) 𝜏𝜏 .................................................... (19) 
 
using Equations (5) – (8), Equation (19) becomes the 
formula for ESCOM with MLPF via RDTM: 
 
𝐶𝐶𝐸𝐸 = 𝑆𝑆 �ln �𝑆𝑆

𝐾𝐾
� + (𝑟𝑟 + 0.5𝜎𝜎2)(𝑇𝑇 − 𝑡𝑡)� , 𝑆𝑆 ≥ 𝐾𝐾 .... (20) 

 

Remark II. 
i. The steps follow logically, demonstrating the 

application of RDTM to solve the given 
equations. 

ii. The final formula (20) resembles a variant of the 
Black-Scholes model for European call options, 
suggesting the method effectively incorporates 
differential transforms to reach a solution in 
financial modeling. 

iii. The steps are mathematically rigorous, ensuring 
each differentiation and max function is carefully 
handled. 

iv. The result aligns with typical solutions for such 
financial models, where higher-order terms often 
diminish. 

v. In summary, the solution demonstrates a clear, 
step-by-step application of RDTM to the ESCOM 
with MLPF, yielding a practical and mathe-
matically sound result for financial modeling. 

 
Validation of the solution. The validation of the 
model involves verifying its accuracy and robustness 
by applying theoretical transformations and 
comparing results with known formulas. Equation 
(20) confirms that the model correctly aligns with the 
theoretical expectations for European call options, 
demonstrating its validity and applicability in 
financial modeling contexts. 
 
Numerical example. In this section, RDTM is applied 
to ESCOM with MLPF using the parameters listed in 
Table 1. 
 
We compute the values of ESCOM for different strike 
prices K and volatility σ using the valuation formula 
(18) derived via RDTM and compare them with the 
Closed Form Solution (CFS) given by: 
 
𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆 = 𝑆𝑆𝜏𝜏�𝜎𝜎√𝜏𝜏𝜂𝜂(𝜁𝜁𝐶𝐶𝐶𝐶𝑆𝑆) + (𝐵𝐵1 + 𝐵𝐵2𝜏𝜏)𝛮𝛮(−𝜁𝜁𝐶𝐶𝐶𝐶𝑆𝑆)� (21) 
 
where:  
 
𝐵𝐵1 = ln �𝑆𝑆𝜏𝜏

𝐾𝐾
� .......................................................... (22) 

 
𝐵𝐵2 = �𝑟𝑟 + 𝜎𝜎2

2
� ...................................................... (23) 

 
𝜁𝜁𝐶𝐶𝐶𝐶𝑆𝑆 = 𝐵𝐵1+𝐵𝐵2𝜏𝜏

𝜎𝜎√𝜏𝜏
 ........................................................ (24) 

 
𝜏𝜏 = 𝑇𝑇 − 𝑡𝑡 .............................................................. (25) 
 
𝜂𝜂(𝜁𝜁𝐶𝐶𝐶𝐶𝑆𝑆) = 1

√2𝜋𝜋
𝑒𝑒𝑚𝑚𝑒𝑒 �− 𝜁𝜁𝐶𝐶𝐶𝐶𝐶𝐶

2

2
� .................................. (26) 

 
and  
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Table 1. Parameters for ESCOM with MLPF 

Parameters Values Source 

S $100 Assumed  
K $80, $90, $100 Assumed 
r 0.08 Assumed 
σ 0.5 Assumed 
T 0.5 Assumed 

 

   

Fig. 1. Comparison of CFS and RDTM for 
volatility σ=30%. 

𝛮𝛮(𝜁𝜁𝐶𝐶𝐶𝐶𝑆𝑆) = ∫ 𝜂𝜂(𝜁𝜁𝐶𝐶𝐶𝐶𝑆𝑆)𝑑𝑑𝜁𝜁𝐶𝐶𝐶𝐶𝑆𝑆
𝑑𝑑𝐶𝐶𝐶𝐶𝐶𝐶
−∞  ............................ (27) 

 
Note that N(.) is the normal distribution.  
 
The results are depicted in Figs. 1-3, showing the 
performance metrics of the model. Fig. 4 illustrates the 
absolute error incurred by RDTM for varying 
volatility values σ. Additionally, Fig. 5 presents the 
logarithmic plot of the absolute error from Fig. 4, 
providing a clearer view of the error trends 
 
Results and Discussion  
In this study, we explore the innovative Reduced 
Differential Transform Method (RDTM) and its 
practical applications in financial modeling. We 
derive solutions for the European Style Call Option 
Model (ESCOM) with the Modified Log-Payoff 
Function (MLPF), developing a precise valuation 
formula. The solution (20) provides a structured 
approach to solving complex differential equations in 
financial mathematics, particularly useful in option 
pricing and other related fields. Through 

Fig. 2. Comparison of CFS and RDTM for 
volatility σ=40%. 

Fig. 3. Comparison of CFS and RDTM for 
volatility σ=50%. 

Fig. 4. Absolute error of RDTM for different 
values of volatility σ. 
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comprehensive comparisons illustrated in Figs. 1-3 
between RDTM and the traditional Closed Form 
Solution (CFS). The analysis reveals strong 
agreement, particularly in scenarios of decreasing 
volatility. Notably, as volatility decreases and 
ESCOM moves deeper into profitability (in-the- 
money), significant reductions in absolute errors are 
observed across these figures. Conversely, Fig. 4 
highlights that ESCOM prices escalate with higher 
volatility levels. Fig. 5 represents the log-absolute 
error, providing a clearer view of the error dynamics 
across different strike prices and volatility levels. This 
transformation helps in visualizing the relative 
differences more effectively, especially for smaller 
error values. These findings underscore RDTM’s 
capability to efficiently and accurately price ESCOM 
with MLPF, affirming its role as a robust framework 
for delivering reliable financial solutions, both 
numerically and approximately. 
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