
Pak. j. sci. ind. res. Ser. A: phys. sci. 2025 68A(2) 199-206 
 

199 

 
 
 
 
 
 
 

 
 
 

 
 

 
 
 
 
 
 
 
 
 

 
 

 

 

nomial fractional wave equation. Numerical methods 
used in differential equations have been classified 
into different types. In contrast to the spectroscopic 
method, which is more widespread, finite difference 
and elements have more limited proofs. Problems 
involving difficult geometries and waveforms are 
suitable for finite element methods. Spectroscopic 
methods provide resolution in the form of multi-step 
finite difference diagrams to solve one-dimensional 
(1D) and two-dimensional (2D) partial differential 
models of electromagnetic waves arising from 
dielectric media containing both Initial boundary 
conditions and Dirichlet boundaries. Fractional 
Caputo derivatives are estimated in time by a 
difference-of-order scheme, fractional differential 
equations (FDEs) describe electro-magnetic fields 
and waves (EFWs) in broad fields of dielectric 
media. Recently, many researches have shown 
interest in analyzing the existence and applications of 
FDEs in electromagnetic theory (Maurya, 2021; 
Maurya et al., 2020). We find several types of 
spectral methods for solving integral and differential 
equations. For the Tau and Galerkin spectral 
methods, we choose two types of basic functions, 
respectively with empirical functions. When we use 
the Galerkin method, we choose empirical functions 
such that all empirical functions that verify the basic 
conditions are the same as the outcome functions for 

Introduction 
 

Sometimes there are no analytical solutions to 
differential equations. The goal is to find solutions to 
possible equations and this is what motivated us to 
design the numerical approximation on irregular grid 
points for some fractional derivatives, (Maurya and 
Singh, 2023). A stable and highly adaptive implicit 
scheme for the time partial propagation wave 
equations is developed using the order discretization 
of the Caputo derivative in the time domain. There 
may be a need for approximate methods based on 
algorithms in some programs and programming 
languages. For examples of different numerical 
methods for solving FDEs, (Li and Zhao, 2010). 
They are used differently to model many models that 
we need in many fields, such as mechanical models 
(Hosseini et al., 2021). Studies have focused on 
dealing with FDEs due to their importance in several 
areas. Spectroscopic methods were relied upon to 
solve such problems (Sun et al., 2019). We take a 
different approach to treating certain types of FDEs, 
numerical algorithms were used in (Srivastava and 
Rai, 2010), to address the partial polynomial 
propagation wave equation. In (Dehghan et al., 2015) 
we follow different approaches to treat the poly-

Abstract. In this paper we present an advanced set of polynomials that can be generalized to Chebyshev 
polynomials. Some basic properties of Chebyshev polynomials and their variables, as well as formulas 
related to generalized polynomials, will be presented. Orthogonal polynomials are used to solve linear 
polynomial fractional differential equations (FDEs) which arise from many applications. The proposed 
algorithm was deduced using a novel method of the power formula for Chebyshev polynomials and the 
Galerkin formula. The method transforms FDE differential equations with initial or boundary conditions 
into a system of linear equations that can be solved efficiently and accurately by solving the appropriate 
numerical solution. The paper includes some examples and comparisons with other methods to prove the 
effectiveness and usefulness of the proposed algorithm. 
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The study of polynomials Illustrate the recursive 
relationship between the second degree and the 
higher degrees, equation (1) and works to clarify and 
generalize some classical polynomials. It was clear in 
(Talaei and Asgheri, 2018) that the solution of first-
order polynomials was given by the following 
formula: 
 
𝜔𝜔𝑖𝑖(𝑥𝑥) = 𝜔𝜔𝑖𝑖

𝛼𝛼,𝛽𝛽,𝛿𝛿,𝜌𝜌(𝑥𝑥) = ∑ 𝒳𝒳𝑘𝑘,𝑖𝑖(𝛼𝛼,𝛽𝛽, 𝛿𝛿,𝜌𝜌)𝑥𝑥𝑘𝑘𝑛𝑛
𝑖𝑖=0 ,𝛽𝛽 ) ...      

................................................................................. (2)  
 
whereas the coefficients (𝛼𝛼,𝛽𝛽, 𝛿𝛿,𝜌𝜌) are explicitly as 
follows: 
 

𝒳𝒳𝑘𝑘,𝑖𝑖(𝛼𝛼,𝛽𝛽, 𝛿𝛿,𝜌𝜌) = �𝑛𝑛𝑘𝑘� �
2𝛼𝛼

𝛽𝛽+�𝛽𝛽2−4𝛼𝛼𝛿𝛿
�
𝑘𝑘−𝑛𝑛

×  

2𝐹𝐹1 �𝑘𝑘 − 𝑛𝑛,
2𝛼𝛼𝛿𝛿−𝛽𝛽𝛿𝛿

2𝛼𝛼�𝛽𝛽2−4𝛼𝛼𝛿𝛿
+ 1 − 𝛿𝛿

2𝛼𝛼
− 𝑛𝑛

2 − 𝛿𝛿
𝛼𝛼
− 2𝑛𝑛

⋮
⋮
⋮
⋮

2�𝛼𝛼2−4𝛼𝛼𝜌𝜌

�𝛽𝛽+�𝛼𝛼2−4𝛼𝛼𝜌𝜌�
� ..  

................................................................................. (3) 

 
we see that the coefficients (k) are binomial 
coefficients. In addition, 2𝐹𝐹1 which appears in 
equation (3) is a geometric function that represents a 
special case of the following: 
 
𝒜𝒜𝐹𝐹𝑟𝑟 �

𝑞𝑞1,𝑞𝑞2,⋯ , 𝑞𝑞𝑛𝑛
𝑧𝑧1, 𝑧𝑧2,⋯ , 𝑧𝑧𝑛𝑛

⋮
⋮ 𝑥𝑥� = ∑ ((𝑞𝑞1)𝑛𝑛(𝑞𝑞2)𝑛𝑛⋯(𝑞𝑞𝑖𝑖)𝑛𝑛)𝑥𝑥

((𝑧𝑧1)𝑛𝑛(𝑧𝑧2)𝑛𝑛⋯(𝑧𝑧𝑖𝑖)𝑛𝑛)(𝑛𝑛!)′
∞
𝑛𝑛=0     

................................................................................. (4) 
 
where 𝒜𝒜 and s are positive integers, there is no 𝑞𝑞𝑖𝑖  is 
zero or a non-positive integer and the symbol 𝑧𝑧𝑖𝑖 
denotes the Pochhammer symbol. It was explained in 
(Chen et al., 2012) that the general properties of the 
polynomials in equation (2) which is represented in 
exponent form in (2) were presented in (Bonab and 
Javidi, 2020). Such as the Rodriguez formula for 
𝜔𝜔𝑖𝑖
𝛼𝛼,𝛽𝛽,𝛿𝛿,𝜌𝜌(𝑥𝑥) given by 

 
𝜔𝜔𝑖𝑖
𝛼𝛼,𝛽𝛽,𝛿𝛿,𝜌𝜌(𝑥𝑥) = 1

�𝛿𝛿𝛼𝛼+𝑛𝑛−1�𝛼𝛼
𝑖𝑖𝜔𝜔𝑖𝑖

𝛼𝛼,𝛽𝛽,𝛿𝛿,𝜌𝜌(𝑥𝑥)
𝒟𝒟𝑛𝑛(𝛼𝛼𝑥𝑥2 + 𝛽𝛽𝑥𝑥 +

𝜌𝜌)𝑛𝑛𝜔𝜔𝑖𝑖
𝛼𝛼,𝛽𝛽,𝛿𝛿,𝜌𝜌(𝑥𝑥) ......................................................... (5)  

 

𝜓𝜓𝑖𝑖
𝛼𝛼,𝛽𝛽,𝛿𝛿,𝜌𝜌(𝑥𝑥) = 𝑒𝑒�∫�

(𝛿𝛿−2𝛼𝛼)𝑥𝑥+(𝑡𝑡−𝛽𝛽)
𝛼𝛼𝑥𝑥2+𝛽𝛽 𝑥𝑥 +𝜌𝜌

�𝑑𝑑𝑥𝑥�  
 
We find in (Karunakar and Chaknaverty, 2019). that 
the polynomials, 𝜓𝜓𝑖𝑖

𝛼𝛼,𝛽𝛽,𝛿𝛿,𝜌𝜌(𝑥𝑥) ≥ 0 orthogonal and the 

example, (Alsuyuti et al., 2019; Ezz-Eldien et al., 
2019). We may find that the Tao method allows 
flexibility and moderation in choosing either of the 
two basic methods. Based on this comparison of all 
spectral methods, the pooling method is the most 
widely used of all differential equations (Awonusika, 
2024; Mokhtary et al., 2016). It is used to solve 
higher order BVPs (Moghadam et al., 2022; Nagy, 
2017). We applied a program based on the Fibonacci 
matrix to treat the nonlinear Klein-Gordon fractional 
equation. We used the fractional order of the first and 
second kind Legendre-integral-differential Fredholm 
equations and other forms of FDEs were dealt with 
using the explicit and implicit wave summation 
method in (Liu et al., 2022). We find that there are 
four types of Chebyshev polynomials in Jacobi 
polynomials. We find that all these types are 
represented in an organized manner, which is 
important for their use in various scientific 
applications. It plays an important role in numerical 
analysis and approximation theories. We used the 
first and second types to treat many types of 
differential equations. The authors in (Hassani et al., 
2019) introduced some generalized Chebyshev poly-
nomials. In addition, it has been used to deal with 
optimal control problems. A sophisticated type of 
multidimensional Chebyshev polynomials was pre-
sented in (Cesarano, 2019; Masjed-Jamei, 2007). In 
this paper, a type of orthogonal Chebyshev 
polynomial of the first kind is presented. Polynomials 
with variable coefficients are also introduced for this 
purpose. Polynomials work in practical and 
laboratory practice in programming, with a more 
accurate representation of the orthogonal relation-
ship. We presented the proposed algorithm for 
processing (FDEs) and presented and verified 
numerical experiments to verify the effectiveness, 
efficiency and applicability of the proposed 
algorithm. Finally, the results are presented. 
 

Some basic formulas of a series. There will be an 
overview of a series of classes of orthogonal poly-
nomials. Some basic properties of fractional calculus 
are presented. 
 

Definition of orthogonal polynomials through 
several aspects. In (Spanier, 1974), a polynomial 
solution to the differential equations: 
 
(𝛼𝛼𝑥𝑥2 + 𝛽𝛽𝑥𝑥 + 𝛿𝛿)𝜔𝜔𝑖𝑖

′′(𝑥𝑥) + (𝛾𝛾𝑥𝑥 + 𝜌𝜌)𝜔𝜔𝑖𝑖
′(𝑥𝑥) −

𝑖𝑖�(𝑖𝑖 − 1)𝛼𝛼 + 𝛾𝛾�𝜔𝜔𝑖𝑖(𝑥𝑥) = 0 ..................................... (1) 
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we have the free parameter b. We will denote the 
resulting polynomials 𝐻𝐻𝑛𝑛

𝛽𝛽(𝑥𝑥) by: 
 
𝐻𝐻𝑛𝑛
𝛽𝛽(𝑥𝑥) = ∑ 𝒳𝒳𝑘𝑘,𝑖𝑖(−1,𝛽𝛽,𝛽𝛽 + 1,−1, 0)𝑛𝑛

𝑖𝑖=0 𝒳𝒳𝑛𝑛  
 
we find that the polynomials 𝐻𝐻𝑛𝑛

𝛽𝛽(𝑥𝑥) are orthogonal to 
[−1,𝛽𝛽 + 1] with respect to the following weight 
function 𝑊𝑊(𝑥𝑥): 
 

𝑊𝑊(𝑥𝑥) = (𝛽𝛽 − 𝑥𝑥 + 1)−
1

𝛽𝛽+2(1 + 𝑥𝑥)−�
𝛽𝛽+1
𝛽𝛽+2� ............... (10)  

 
From the formula in equation (5) for the polynomials 
𝜔𝜔𝑖𝑖
𝛼𝛼,𝛽𝛽,𝛿𝛿,𝜌𝜌(𝑥𝑥), it can be shown that the formula 𝐻𝐻𝑛𝑛

𝛽𝛽(𝑥𝑥) 
is given by: 
 
𝐻𝐻𝑛𝑛
𝛽𝛽(𝑥𝑥) = 2(−1)𝑛𝑛𝑛𝑛!

(2!)!  𝑊𝑊(𝑥𝑥)
𝒟𝒟𝑛𝑛�(𝛽𝛽 − 𝑥𝑥 + 1)𝑛𝑛(1 +

𝑥𝑥)𝑛𝑛 𝑊𝑊(𝑥𝑥)�,𝑛𝑛 ≥ 1 ................................................. (11)  
 
We find here that we have two main reasons for 
choosing the five phenomena as in equation (9): 
 
Lemma 3-1. For every positive integer 𝑘𝑘 and every 
positive real number 𝛽𝛽, the integral formula holds: 
 
∫ (1 + 𝛽𝛽 + 𝛽𝛽𝑥𝑥 − 𝑥𝑥2)𝑘𝑘𝛽𝛽+1
−1 𝑊𝑊(𝑥𝑥)𝑑𝑑𝑥𝑥 =

(𝛽𝛽+2)2𝑘𝑘 Γ�� 1
𝛽𝛽+2�+𝑘𝑘�Γ��

𝛽𝛽+1
𝛽𝛽+2�+𝑘𝑘�

�(2𝑘𝑘)!�
 .................................. (12)  

 
Proof. To simplify the integration, we replace 𝑥𝑥 with 
(𝛽𝛽 + 2)2𝑘𝑘, that is, we have the following formula. 
 
∫ (1 + 𝛽𝛽 + 𝛽𝛽𝑥𝑥 − 𝑥𝑥2)𝑘𝑘𝛽𝛽+1
−1 𝑊𝑊(𝑥𝑥)𝑑𝑑𝑥𝑥 = (𝛽𝛽 +

2)2𝑘𝑘 ∫ �(1 − 𝑥𝑥)
−�� 1

𝛽𝛽+2�−𝑘𝑘�𝑥𝑥−1+�
1

𝛽𝛽+2�+𝑘𝑘�1
0 𝑑𝑑𝑥𝑥 ...... (13)   

 
It is easy to prove that the following equation holds: 
 

∫ (1 − 𝑥𝑥)𝑘𝑘−�
1

𝛽𝛽+2�1
0 𝑥𝑥𝑘𝑘−�

𝛽𝛽+1
𝛽𝛽+2�𝑑𝑑𝑥𝑥 =

Γ�� 1
𝛽𝛽+2�+𝑘𝑘�Γ��

𝛽𝛽+1
𝛽𝛽+2�+𝑘𝑘�

�(2𝑘𝑘)!�
 

............................................................................... (14) 
 
From this, we arrive at the following identity. 
 
∫ (1 + 𝛽𝛽 + 𝛽𝛽𝑥𝑥 − 𝑥𝑥2)𝑘𝑘𝛽𝛽+1
−1 𝑊𝑊(𝑥𝑥)𝑑𝑑𝑥𝑥 =

(𝛽𝛽+2)2𝑘𝑘 Γ�� 1
𝛽𝛽+2�+𝑘𝑘�Γ��

𝛽𝛽+1
𝛽𝛽+2�+𝑘𝑘�

�(2𝑘𝑘)!�
  ................................ (15) 

choices of the phenomena α, β, δ, ρ and e on the 
interval (Q, R) where Q and R are the zeros of the 
second-order equation: an 𝛼𝛼𝑥𝑥2 + 𝛽𝛽𝑥𝑥 + 𝜌𝜌 = 0. It is 
also clear that the following important formula: 
 

∫ 𝜔𝜔𝑖𝑖
𝛼𝛼,𝛽𝛽,𝛿𝛿,𝜌𝜌(𝑥𝑥) �𝜓𝜓𝑖𝑖

𝛼𝛼,𝛽𝛽,𝛿𝛿,𝜌𝜌(𝑥𝑥)�
2
𝑑𝑑𝑥𝑥𝑅𝑅

𝑄𝑄 =

(−1)𝑛𝑛𝑛𝑛!

�𝛿𝛿𝛼𝛼+𝑛𝑛−1�𝑛𝑛
𝛼𝛼𝑛𝑛
∫ (𝑥𝑥2 + 𝛽𝛽 𝑥𝑥 + 𝜌𝜌)𝑛𝑛𝑅𝑅
𝑄𝑄 𝑒𝑒�∫�

(𝛿𝛿−2𝛼𝛼)𝑥𝑥+(𝑡𝑡−𝛽𝛽)
𝛼𝛼𝑥𝑥2+𝛽𝛽 𝑥𝑥 +𝜌𝜌

�𝑑𝑑𝑥𝑥�𝑑𝑑𝑥𝑥  

 ................................................................................ (6) 
 
Remark 2-1. We point out here that there are many 

phenomena in polynomials 𝜓𝜓𝑖𝑖
𝛼𝛼,𝛽𝛽,𝛿𝛿,𝜌𝜌(𝑥𝑥). The existence 

of a few orthogonal polynomial series, including 
Jacobi and Laguerre polynomials, means that they are 
special series of polynomials (Karunakar and 
Chaknaverty, 2019). This shows the importance of 
this study. 
 

Definition 2-1. The Riemann-Liouville fractional 
integral operator 𝒲𝒲𝑥𝑥

𝑢𝑢 of order u>0 can be defined as 
follows: 
 

𝒲𝒲𝑥𝑥
𝑢𝑢𝒳𝒳(𝑥𝑥) = 1

Γ(𝑢𝑢)∫ � 𝒳𝒳(⌈𝑢𝑢⌉)(ℓ)
�(𝑥𝑥−ℓ)𝑢𝑢+1−⌈𝑢𝑢⌉�

� 𝑑𝑑ℓ𝑥𝑥
0  .................... (7)  

 
Definition 2-2. The Caputo fractional derivative 
operator 𝒲𝒲𝑥𝑥

𝑢𝑢𝒳𝒳(𝑥𝑥) of the order 𝑢𝑢 > 0 can be defined 
as follows: 
 

𝒟𝒟𝑥𝑥
𝑢𝑢𝒳𝒳(𝑥𝑥) = 1

Γ(⌈𝑢𝑢⌉−𝑢𝑢)∫
𝒳𝒳(⌈𝑢𝑢⌉)(𝑡𝑡)

(𝑥𝑥−𝑡𝑡)𝑢𝑢+1−⌈𝑢𝑢⌉
𝑥𝑥
0 𝑑𝑑𝑑𝑑, ..................... (8)  

 
where ⌈𝑢𝑢⌉ Indicates a function and x>0. 
 
Chebyshev polynomials of the first kind. We have 
introduced a set of polynomials that will be 
generalized to sets of Chebyshev polynomials of the 
first kind. We also introduce some basic properties of 
Chebyshev polynomials, and we will also introduce 
generalized Chebyshev polynomials, and some basic 
properties will be developed in them. 
 
Generalized Chebyshev polynomials of the first 
kind. We will extract the generalized group from 
Chebyshev polynomials. It is a special set of sets of 
polynomials 𝜔𝜔𝑖𝑖

𝛼𝛼,𝛽𝛽,𝛿𝛿,𝜌𝜌,ℓ(𝑥𝑥) in equation (2). We will 
make the following choices: 
 
𝛼𝛼 = −1,𝜌𝜌 = 𝛽𝛽 + 1, 𝛿𝛿 = −1, ℓ = 0 ........................ (9)  
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Theorem 3-2. For every integer mu r, it has the 
following formula: 
 

𝑥𝑥𝑞𝑞 = ∑ �(𝛽𝛽+2)𝑘𝑘−𝑞𝑞(1+𝑘𝑘−𝑖𝑖)
𝑖𝑖! (2𝑞𝑞−2𝑖𝑖+1)𝑖𝑖

� �𝑅𝑅𝐻𝐻𝑞𝑞−𝑗𝑗
𝛽𝛽 (𝑥𝑥)�𝑞𝑞

𝑖𝑖=0  ............. (21)  

 
Proof. First, we can write the identity: 
 
𝑥𝑥𝑛𝑛 = ∑ �𝒳𝒳𝑘𝑘,𝑖𝑖𝑅𝑅𝐻𝐻𝑛𝑛−𝑗𝑗

𝛽𝛽 �(𝑥𝑥)𝑛𝑛
𝑖𝑖=0  ................................... (22) 

 
To prove the identity of (21), we need to find the 
coefficients 𝒳𝒳𝑘𝑘,𝑖𝑖 Now, multiplying both sides of (22) 

by 𝑅𝑅𝐻𝐻𝑛𝑛−𝑗𝑗
𝛽𝛽 (𝑥𝑥)𝑊𝑊� (𝑥𝑥) and integrating from 0 to 1, we 

get: 
 
∑ 𝒳𝒳𝑘𝑘,𝑖𝑖
𝑛𝑛
𝑖𝑖=0 ∫ 𝑅𝑅𝐻𝐻𝑛𝑛−𝑗𝑗

𝛽𝛽 (𝑥𝑥)1
0 𝑅𝑅𝐻𝐻𝑚𝑚

𝛽𝛽 (𝑥𝑥)𝑊𝑊� (𝑥𝑥)𝑑𝑑𝑥𝑥 =

∫ �𝑥𝑥𝑛𝑛𝑅𝑅𝐻𝐻𝑚𝑚
𝛽𝛽 (𝑥𝑥)𝑊𝑊� (𝑥𝑥)�1

0 𝑑𝑑𝑥𝑥...................................... (23) 

 
The orthogonality of 𝑅𝑅𝐻𝐻𝑛𝑛−𝑗𝑗

𝛽𝛽 (𝑥𝑥) in (20) enables us to 
determine the coefficients 𝛼𝛼, 𝑖𝑖, 𝑛𝑛 in the model:  
 
𝒳𝒳𝑘𝑘,𝑖𝑖 = 1

𝜓𝜓𝑛𝑛−𝑖𝑖Ψ𝑛𝑛−𝑖𝑖
∫ �𝑥𝑥𝑛𝑛𝑅𝑅𝐻𝐻𝑛𝑛−𝑗𝑗

𝛽𝛽 (𝑥𝑥)𝑊𝑊� (𝑥𝑥)�1
0  𝑑𝑑𝑥𝑥 ........ (24)  

 
where the variable 𝑞𝑞 is as defined in (21). Now, from 
the force representation of 𝑅𝑅𝐻𝐻𝑛𝑛−𝑗𝑗

𝛽𝛽 (𝑥𝑥) in (18), we can 
write equations: 
 
𝑅𝑅𝐻𝐻𝑛𝑛

𝛽𝛽(𝑥𝑥) = ∑ 𝐻𝐻𝑚𝑚,𝑘𝑘
𝑘𝑘
𝑚𝑚=0 𝑥𝑥𝑘𝑘−𝑚𝑚 ................................. (25)  

 
where we give the coefficients 𝑅𝑅𝐻𝐻𝑛𝑛−𝑗𝑗

𝛽𝛽  by (18). 
Substituting formula (25) into formula (24), we can 
write the coefficients 𝒳𝒳𝑘𝑘,𝑖𝑖 in form: 

 
𝒳𝒳𝑘𝑘,𝑖𝑖 = 1

𝜓𝜓𝑛𝑛−𝑖𝑖Ψ𝑛𝑛−𝑖𝑖
∑ 𝐻𝐻𝑚𝑚,𝑘𝑘−𝑖𝑖
𝑘𝑘−1
𝑚𝑚=0 ∫ �𝑥𝑥2𝑘𝑘−𝑖𝑖−𝑚𝑚𝑊𝑊� (𝑥𝑥)�1

0 𝑑𝑑𝑥𝑥.  

.............................................................................. (26) 
 
It is possible to obtain the following equation: 
 

∫ 𝑥𝑥𝑘𝑘1
0 𝑊𝑊� (𝑥𝑥)𝑑𝑑𝑥𝑥 =

Γ�𝛽𝛽+1𝛽𝛽+2�Γ�
1

𝛽𝛽+2+𝑘𝑘�

(𝛽𝛽+2)𝑘𝑘!
 ........................... (27) 

 
Applying theorem 3-1 puts the coefficients 𝒳𝒳𝑘𝑘,𝑖𝑖 in the 
following form: 
 

Theorem 3-1. For every positive integer 𝑘𝑘 and every 
positive real number 𝛽𝛽 then the integrated formula 
holds: 
 

∫ �𝐻𝐻𝑛𝑛
𝛽𝛽(𝑥𝑥)�

2𝛽𝛽+1
−1 𝑊𝑊(𝑥𝑥)𝑑𝑑𝑥𝑥 =

21−4𝑘𝑘(𝛽𝛽+2)2𝑘𝑘𝜋𝜋 Γ�� 1
𝛽𝛽+2�+𝑘𝑘�Γ��

𝛽𝛽+1
𝛽𝛽+2�+𝑘𝑘�

Γ�𝑘𝑘+12�
2   ....................... (16) 

 
where the weight function w(x) is given by equation 
(10). 
 
Proof. The proof of equation (12) depends on making 
use of formula (6). More precisely and clearly, if we 
substitute α = −1, ρ = β, δ = −1, ℓ = 0, then we get: 
 

∫ �𝐻𝐻𝑛𝑛
𝛽𝛽(𝑥𝑥)�

2𝛽𝛽+1
−1 𝑊𝑊(𝑥𝑥)𝑑𝑑𝑥𝑥 = 2(𝑘𝑘!)2

(2𝑘𝑘)! ∫ �(1 + 𝛽𝛽 +𝛽𝛽+1
−1

𝛽𝛽𝑥𝑥 − 𝑥𝑥2)𝑘𝑘 𝑊𝑊(𝑥𝑥)� 𝑑𝑑𝑥𝑥 ............................................ (17) 

 
Directly applying Lemma 1 produces formula (16). 
 

Shifted generalized chebyshev polynomials. In many 
practical applications, we can identify. Aligned 
polynomials on the interval [0, 1]. Then we define the 
transformed polynomial 𝑅𝑅𝐻𝐻𝑛𝑛

𝛽𝛽(𝑥𝑥) on [0, 1] as: 
 
𝑅𝑅𝐻𝐻𝑛𝑛

𝛽𝛽(𝑥𝑥) = 𝐻𝐻𝑛𝑛
𝛽𝛽(𝛽𝛽 + 2)𝑥𝑥 − 1 ................................. (18) 

 
The Rodriguez formula for Chebyshev polynomials 
𝐻𝐻𝑛𝑛
𝛽𝛽(𝑥𝑥) in (11). It can simply be transformed to give 

the counterpart of the Chebyshev polynomials 
defined in (18) (Karunakar and Chaknaverty, 2019; 
Aghigh et al., 2008). The polynomial 𝑅𝑅𝐻𝐻𝑛𝑛

𝛽𝛽(𝑥𝑥) can be 
constructed using Rodriguez’s formula: 
 

𝑅𝑅𝐻𝐻𝑛𝑛
𝛽𝛽(𝑥𝑥) = 2(−1)𝑘𝑘𝑘𝑘! (𝛽𝛽+2)𝑘𝑘

(2𝑘𝑘)! 𝑊𝑊� (𝑥𝑥)
𝒟𝒟𝑘𝑘 �(1 − 𝑥𝑥)𝑘𝑘𝑥𝑥𝑘𝑘𝑊𝑊� (𝑥𝑥)� ...... 

 .............................................................................. (19)  
 
where 𝑘𝑘 ≥ 1 and 𝑊𝑊� (𝑥𝑥) is given by: 
 

𝑊𝑊� (𝑥𝑥) = 1
𝛽𝛽+2

(𝑥𝑥)�
1

𝛽𝛽+2−1�(1 − 𝑥𝑥)−�
1

𝛽𝛽+2� .................. (20) 

 
for further studies, it is useful to define some basic 
properties of the transformed Chebyshev polynomials 
𝑅𝑅𝐻𝐻𝑛𝑛

𝛽𝛽(𝑥𝑥). 
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Fig. 1. 𝒳𝒳𝑁𝑁(𝜑𝜑) of our algorithm for 𝑢𝑢1 = 0.25 
and 𝑁𝑁 = 4 with 𝛽𝛽 = 0 for example 5.1. 

Table 2. Comparison of ‖. ‖2-errors of our algorithm 
at µ1=0.75 and β= for distinct N with the Chelyshkov 
Spectral Method (Chen et al., 2012) and proposed 
algorithm (Bonab and Javidi, 2020) for example 5.1 
 

N CCSM Our method 
8 3.02×10-3 8.50×10-2 
16 3.12×10-2 7.60×10-2 
32 3.82×10-1 5.21×10-2 

 
 
 

Table 1. Comparison of ‖. ‖∞ −errors where ℓ∞ are 
given max |. | or max errors and ‖. ‖2-errors, ℓ2 are 
given �∑ (. )𝑖𝑖2𝑛𝑛

𝑖𝑖=1 , of our algorithm at µ1=0.75 and 
N=4 with distinct β for example 5.1 
 

β ‖.‖∞-Errors ‖.‖2-Errors 
0 3.02364×10-5 1.11641×10-5 
1 4.12031×10-5 2.57854 × 10-5 
2 5.99751×10-5 3.67207×10-6 
3 1.64375×10-6 5.79251×10-6 
4 1.64266×10-5 5.65481×10-6 
5 1.64236×10-5 5.65345×10-6 

 

𝒳𝒳𝑘𝑘,𝑖𝑖 =
(𝛽𝛽+2)𝑖𝑖−𝑘𝑘(1+𝑘𝑘−𝑖𝑖)𝑖𝑖��

1
𝛽𝛽+2+𝑘𝑘−𝑖𝑖�𝑖𝑖

�

𝑖𝑖! (1+2𝑘𝑘−2𝑖𝑖)𝑖𝑖
 ........................ (28)  

 
This proves theorem 2. 
 
Remark 3.1. Where we find non-homogeneous linear 
polynomial FDEs (26) with initial conditions, 
identity: 
 
𝒳𝒳𝑚𝑚(0) = 𝒴𝒴𝑚𝑚,               𝑚𝑚 = 0,1,⋯ , 𝑘𝑘 − 1  
 
where:  
𝒴𝒴𝑚𝑚 are arbitrary constants, 0 ≤ 𝑚𝑚 ≤ 𝑛𝑛 − 1, the 
following transformation is used: 
 
𝒳𝒳�(𝑥𝑥) = 𝒳𝒳(𝑥𝑥) − ∑ 𝒴𝒴𝑚𝑚

𝑚𝑚!
𝑛𝑛−1
𝑚𝑚=0 𝒳𝒳𝑚𝑚 ............................. (29)  

 
Illustrative polynomials and comparisons. Here we 
limit ourselves to testing our proposed algorithm. For 
this reason, we will present two numerical examples 
and compare them with other techniques to 
demonstrate the accuracy and high efficiency of the 
proposed algorithm. 
 

Example 5.1. Consider the partial oscillation 
equation of a vehicle immersed in a Newtonian fluid 
with the condition (Bonab and Javidi, 2020; Chen et 
al., 2012): 
 
𝒟𝒟𝛼𝛼
𝑢𝑢𝒳𝒳(𝜑𝜑) + 𝒳𝒳(𝜑𝜑) = 𝜑𝜑4 − 1

2
𝜑𝜑3 − 3

Γ(4−𝑢𝑢1)
𝜑𝜑3−𝑢𝑢1 +

24
Γ(5−𝑢𝑢1)

𝜑𝜑4−𝑢𝑢1  0 < 𝑢𝑢1 < 1, 𝒳𝒳(0) = 0. 
 
The solution to the problem is: 
 
𝒳𝒳(𝜑𝜑) = 𝜑𝜑4 − 1

2
(𝜑𝜑)3  

 
The solution of this problem numerically in (Chen et 
al., 2012) is based on the Chelyshkov Spectral 
Method for the numerical solution of the problem, 
while the method was applied in (Bonab and Javidi, 
2020), for the numerical treatment of the problem. 
The error of the presented method for different values 
of N with µ1=0.25 and b=2 is reviewed in Table 1. 
Moreover, the results are compared in Table 2 with 
those obtained by (Chen et al., 2012; Bonab and 
Javidi, 2020) and we get the results that are in the 
table to ensure the verification of the proposed 
method compared to the other method. Figure 1 plots 
the maximum absolute error of the solutions 

generated by applying our proposed algorithm for 
µ1=0.25, β=0 and N=4, while Fig. 2 displays the 
proposed algorithm for the case corresponding to 
µ1=0.75 and β=2 with distinct values of N. 
 
Remark 5.1. From the data in Table 2, we conclude 
that standard Chebyshev polynomials of the first kind 



 
204 Mariam Al Mahdi Mohammad Mulla 

 
 

 
 

 

 
 

 
 

 
 

 

Fig. 3. Comparison of ((Log10)‖. ‖∞ −
Errors) of our algorithm at β=0 and β=1 
for N=0 with distinct u1 for example 2. 

 

Table 3. ‖. ‖∞ − Errors of our algorithm at µ1=0.6 
and N=2 with distinct β for example 5.2. 
 

β ‖.‖∞-Errors 

0 2.00310×10-11 
1 1.1016×10-11 
2 2.0320×10-11 
3 2.0310×10-11 
4 2.03210×10-11 
5 2.03210×10-11 

 

with distinct µ1. Fig. 4 give the 𝒳𝒳𝑁𝑁(𝜑𝜑) for the 
algorithm respectively: µ1=0.6, β=1, N=2 and µ1=0.7, 
β=1, N=2. 
 

Fig. 2. (Log10)‖. ‖∞ − errors) of our algorithm 
at µ1=0.25 and β=2 with distinct N for 
example 5.1. 

 

are not the best approximations among the different 
classes of shifted polynomials 𝑅𝑅𝐻𝐻𝑛𝑛

𝛽𝛽(𝑥𝑥). This 
demonstrates the importance of generalizing to the 
first type of Chebyshev polynomials and the 
displacement operations on them, as well as the effect 
of the parameter β that occurs in shifted polynomials 
(Bonab and Javidi, 2020; Chen et al., 2012). 
 
Example 5.2. Consider the following problem FDE: 
 
𝒟𝒟𝛼𝛼
𝑢𝑢𝒳𝒳(𝜑𝜑) + 𝒳𝒳(𝜑𝜑) = 𝜑𝜑2 + 2

Γ(3−𝑢𝑢1)
�𝜑𝜑(2−𝑢𝑢1)� and 

𝒳𝒳(0) = 0, 
 
in which 𝒳𝒳(𝜑𝜑) = 𝜑𝜑2 is the exact solution. Methods 
have been developed to solve this problem 
numerically. Which was proposed in (Talaei and 
Asgari, 2018; Chen et al., 2012). There are explicit 
methods based on the third-order fractional inverse 
differentiation method for numerical solutions. We 
applied a special algorithm to obtain the numerical 
solution to this problem. In Table 3, the errors‖. ‖∞ 
resulting from the application of the proposed 
algorithm are shown corresponding to µ1=0.25 and 
N=2 with distinct b. In addition to, in third ordered 
the comparison between the ‖. ‖∞-Errors resulting 
from the proposed algorithm for µ1=0.6 and β=1 for 
N=2 with the explicit methods based on the third-
order developed in (Talaei and Asgari, 2018; Chen et 
al., 2012), (h is the mesh size), we explain the effect 
of the parameter β and the comparison in Table 4 is 
made. In Fig. 3 the resulting ((Log10)‖. ‖∞ − errors) 
for the proposed algorithm for β=0 and β=1, N=2 
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polynomials are introduced, differential equations are 
solved using generalized polynomials. We intend to 
use orthogonal polynomials to solve other types of 
differential equations. 
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